Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb;25(2):189-99.
doi: 10.1016/0021-9290(92)90275-6.

Towards a model for force predictions in the human shoulder

Affiliations

Towards a model for force predictions in the human shoulder

D Karlsson et al. J Biomech. 1992 Feb.

Abstract

In this paper the concept of a three-dimensional biomechanical model of the human shoulder is introduced. This model is used to analyze static load sharing between the muscles, the bones and the ligaments. The model consists of all shoulder structures, which means that different positions and different load situations may be analyzed using the same model. Solutions can be found for the complete range of shoulder motion. However, this article focuses only on elevation in the scapular plane and on forces in structures attached to the humerus. The intention is to expand the model in future studies to also involve the forces acting on the other shoulder bones: the scapula and the clavicle. The musculoskeletal forces in the shoulder complex are predicted utilizing the optimization technique with the sum of squared muscle stresses as an objective function. Numerical results predict that among the muscles crossing the glenohumeral joint parts of the deltoideus, the infraspinatus, the supraspinatus, the subscapularis, the pectoralis major, the coracobrachialis and the biceps are the muscles most activated during this sort of abduction. Muscle-force levels reached values of 150 N when the hand load was 1 kg. The results from the model seem to be qualitatively accurate, but it is concluded that in the future development of the model the direction of the contact force in the glenohumeral joint must be constrained.

PubMed Disclaimer

Publication types

LinkOut - more resources