Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria
- PMID: 17340220
- DOI: 10.1007/s10126-006-6073-x
Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria
Abstract
This review article explores the potential of using mariculture-raised cyanobacteria as solar energy converters of hydrogen (H(2)). The exploitation of the sea surface for large-scale renewable energy production and the reasons for selecting the economical, nitrogenase-based systems of cyanobacteria for H(2) production, are described in terms of societal benefits. Reports of cyanobacterial photobiological H(2) production are summarized with respect to specific activity, efficiency of solar energy conversion, and maximum H(2) concentration attainable. The need for further improvements in biological parameters such as low-light saturation properties, sustainability of H(2) production, and so forth, and the means to overcome these difficulties through the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering are also discussed. Finally, a possible mechanism for the development of economical large-scale mariculture operations in conjunction with international cooperation and social acceptance is outlined.
Similar articles
-
A feasibility study of large-scale photobiological hydrogen production utilizing mariculture-raised cyanobacteria.Adv Exp Med Biol. 2010;675:291-303. doi: 10.1007/978-1-4419-1528-3_17. Adv Exp Med Biol. 2010. PMID: 20532748
-
Genetic engineering of cyanobacteria to enhance biohydrogen production from sunlight and water.Ambio. 2012;41 Suppl 2(Suppl 2):169-73. doi: 10.1007/s13280-012-0275-4. Ambio. 2012. PMID: 22434447 Free PMC article.
-
Photobiological production of hydrogen gas as a biofuel.Curr Opin Biotechnol. 2010 Jun;21(3):244-51. doi: 10.1016/j.copbio.2010.02.012. Epub 2010 Mar 19. Curr Opin Biotechnol. 2010. PMID: 20303737 Review.
-
The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel.Crit Rev Microbiol. 2005;31(1):19-31. doi: 10.1080/10408410590912961. Crit Rev Microbiol. 2005. PMID: 15839402 Review.
-
Photobiological hydrogen production: Recent advances and state of the art.Bioresour Technol. 2011 Sep;102(18):8403-13. doi: 10.1016/j.biortech.2011.03.026. Epub 2011 Mar 14. Bioresour Technol. 2011. PMID: 21463932 Review.
Cited by
-
In vitro synthesis of the iron-molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins.Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17626-31. doi: 10.1073/pnas.0703050104. Epub 2007 Oct 31. Proc Natl Acad Sci U S A. 2007. PMID: 17978192 Free PMC article.
-
How close we are to achieving commercially viable large-scale photobiological hydrogen production by cyanobacteria: a review of the biological aspects.Life (Basel). 2015 Mar 18;5(1):997-1018. doi: 10.3390/life5010997. Life (Basel). 2015. PMID: 25793279 Free PMC article. Review.
-
Effects of disruption of homocitrate synthase genes on Nostoc sp. strain PCC 7120 photobiological hydrogen production and nitrogenase.Appl Environ Microbiol. 2007 Dec;73(23):7562-70. doi: 10.1128/AEM.01160-07. Epub 2007 Oct 12. Appl Environ Microbiol. 2007. PMID: 17933939 Free PMC article.
-
Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production.Appl Environ Microbiol. 2010 Oct;76(20):6741-50. doi: 10.1128/AEM.01056-10. Epub 2010 Aug 13. Appl Environ Microbiol. 2010. PMID: 20709836 Free PMC article.
-
Sucrose synthase is involved in the conversion of sucrose to polysaccharides in filamentous nitrogen-fixing cyanobacteria.Planta. 2008 Sep;228(4):617-25. doi: 10.1007/s00425-008-0764-7. Epub 2008 Jun 17. Planta. 2008. PMID: 18560883