Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan;106(1):184-206.
doi: 10.1016/j.cognition.2007.01.003. Epub 2007 Mar 6.

Learning non-local dependencies

Affiliations

Learning non-local dependencies

Gustav Kuhn et al. Cognition. 2008 Jan.

Abstract

This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., and Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. Journal of Experimental Psychology-Learning Memory and Cognition, 31(6) 1417-1432] showed that people could implicitly learn a musical rule that was solely based on non-local dependencies. These results seriously challenge models of implicit learning that assume knowledge merely takes the form of linking adjacent elements (chunking). We compare two models that use a buffer to allow learning of long distance dependencies, the Simple Recurrent Network (SRN) and the memory buffer model. We argue that these models - as models of the mind - should not be evaluated simply by fitting them to human data but by determining the characteristic behaviour of each model. Simulations showed for the first time that the SRN could rapidly learn non-local dependencies. However, the characteristic performance of the memory buffer model rather than SRN more closely matched how people came to like different musical structures. We conclude that the SRN is more powerful than previous demonstrations have shown, but it's flexible learned buffer does not explain people's implicit learning (at least, the affective learning of musical structures) as well as fixed memory buffer models do.

PubMed Disclaimer

LinkOut - more resources