Neurovascular coupling is not mediated by potassium siphoning from glial cells
- PMID: 17344384
- PMCID: PMC2289782
- DOI: 10.1523/jneurosci.3204-06.2007
Neurovascular coupling is not mediated by potassium siphoning from glial cells
Abstract
Neuronal activity evokes localized changes in blood flow, a response termed neurovascular coupling. One widely recognized hypothesis of neurovascular coupling holds that glial cell depolarization evoked by neuronal activity leads to the release of K+ onto blood vessels (K+ siphoning) and to vessel relaxation. We now present two direct tests of this glial cell-K+ siphoning hypothesis of neurovascular coupling. Potassium efflux was evoked from glial cells in the rat retina by applying depolarizing current pulses to individual cells. Glial depolarizations as large as 100 mV produced no change in the diameter of adjacent arterioles. We also monitored light-evoked vascular responses in Kir4.1 knock-out mice, where functional Kir K+ channels are absent from retinal glial cells. The magnitude of light-evoked vasodilations was identical in Kir4.1 knock-out and wild-type animals. Contrary to the hypothesis, the results demonstrate that glial K+ siphoning in the retina does not contribute significantly to neurovascular coupling.
Figures


Similar articles
-
Signalling within the neurovascular unit in the mammalian retina.Exp Physiol. 2007 Jul;92(4):635-40. doi: 10.1113/expphysiol.2006.036376. Epub 2007 Apr 13. Exp Physiol. 2007. PMID: 17434916 Free PMC article. Review.
-
Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling.J Neurosci. 2006 Mar 15;26(11):2862-70. doi: 10.1523/JNEUROSCI.4048-05.2006. J Neurosci. 2006. PMID: 16540563 Free PMC article.
-
Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.Glia. 2002 Sep;39(3):292-303. doi: 10.1002/glia.10112. Glia. 2002. PMID: 12203395
-
Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions.J Cell Mol Med. 2006 Jan-Mar;10(1):33-44. doi: 10.1111/j.1582-4934.2006.tb00289.x. J Cell Mol Med. 2006. PMID: 16563220 Free PMC article. Review.
-
Complex rectification of Müller cell Kir currents.Glia. 2008 May;56(7):775-90. doi: 10.1002/glia.20652. Glia. 2008. PMID: 18293411 Free PMC article.
Cited by
-
Potassium buffering in the neurovascular unit: models and sensitivity analysis.Biophys J. 2013 Nov 5;105(9):2046-54. doi: 10.1016/j.bpj.2013.09.012. Biophys J. 2013. PMID: 24209849 Free PMC article.
-
Blood oxygenation level-dependent (BOLD) functional MRI of visual stimulation in the rat retina at 11.7 T.NMR Biomed. 2011 Feb;24(2):188-93. doi: 10.1002/nbm.1571. Epub 2010 Dec 3. NMR Biomed. 2011. PMID: 21344533 Free PMC article.
-
Neurovascular interaction and the pathophysiology of diabetic retinopathy.Exp Diabetes Res. 2011;2011:693426. doi: 10.1155/2011/693426. Epub 2011 Feb 21. Exp Diabetes Res. 2011. PMID: 21747832 Free PMC article. Review.
-
The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease.Neuron. 2017 Sep 27;96(1):17-42. doi: 10.1016/j.neuron.2017.07.030. Neuron. 2017. PMID: 28957666 Free PMC article. Review.
-
Astrocyte regulation of blood flow in the brain.Cold Spring Harb Perspect Biol. 2015 Mar 27;7(5):a020388. doi: 10.1101/cshperspect.a020388. Cold Spring Harb Perspect Biol. 2015. PMID: 25818565 Free PMC article. Review.
References
-
- Brew H, Gray PTA, Mobbs P, Attwell D. Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature. 1986;324:466–468. - PubMed
-
- Bringmann A, Faude F, Reichenbach A. Mammalian retinal glial (Müller) cells express large-conductance Ca2+-activated K+ channels that are modulated by Mg2+ and pH and activated by protein kinase A. Glia. 1997;19:311–323. - PubMed
-
- Edvinsson L, MacKenzie ET, McCulloch J. Cerebral blood flow and metabolism. New York: Raven; 1993.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases