A functional study of miR-124 in the developing neural tube
- PMID: 17344415
- PMCID: PMC1820895
- DOI: 10.1101/gad.1519207
A functional study of miR-124 in the developing neural tube
Abstract
Neural development is a highly orchestrated process that entails precise control of gene expression. Although microRNAs (miRNAs) have been implicated in fine-tuning gene networks, the roles of individual miRNAs in vertebrate neural development have not been studied in vivo. We investigated the function of the most abundant neuronal miRNA, miR-124, during spinal cord development. Neither inhibition nor overexpression of miR-124 significantly altered the acquisition of neuronal fate, suggesting that miR-124 is unlikely to act as a primary determinant of neuronal differentiation. Two endogenous targets of miR-124, laminin gamma 1 and integrin beta1, were identified, both of which are highly expressed by neural progenitors but repressed upon neuronal differentiation. Thus miR-124 appears to ensure that progenitor genes are post-transcriptionally inhibited in neurons.
Figures





Similar articles
-
Regulation of miRNA expression during neural cell specification.Eur J Neurosci. 2005 Mar;21(6):1469-77. doi: 10.1111/j.1460-9568.2005.03978.x. Eur J Neurosci. 2005. PMID: 15845075
-
The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord.Dev Biol. 2007 May 15;305(2):659-73. doi: 10.1016/j.ydbio.2007.02.012. Epub 2007 Feb 16. Dev Biol. 2007. PMID: 17399698
-
Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.Genome Biol. 2004;5(3):R13. doi: 10.1186/gb-2004-5-3-r13. Epub 2004 Feb 16. Genome Biol. 2004. PMID: 15003116 Free PMC article.
-
Transcriptional networks regulating neuronal identity in the developing spinal cord.Nat Neurosci. 2001 Nov;4 Suppl:1183-91. doi: 10.1038/nn750. Nat Neurosci. 2001. PMID: 11687828 Review.
-
Establishing neuronal diversity in the spinal cord: a time and a place.Development. 2019 Nov 25;146(22):dev182154. doi: 10.1242/dev.182154. Development. 2019. PMID: 31767567 Review.
Cited by
-
Profiling of REST-Dependent microRNAs Reveals Dynamic Modes of Expression.Front Neurosci. 2012 May 10;6:67. doi: 10.3389/fnins.2012.00067. eCollection 2012. Front Neurosci. 2012. PMID: 22590451 Free PMC article.
-
Differential expression of conserved and novel microRNAs during tail regeneration in the lizard Anolis carolinensis.BMC Genomics. 2016 May 5;17:339. doi: 10.1186/s12864-016-2640-3. BMC Genomics. 2016. PMID: 27150582 Free PMC article.
-
Transcriptome profiling of genes involved in neural tube closure during human embryonic development using long serial analysis of gene expression (long-SAGE).Birth Defects Res A Clin Mol Teratol. 2012 Sep;94(9):683-92. doi: 10.1002/bdra.23040. Epub 2012 Jul 18. Birth Defects Res A Clin Mol Teratol. 2012. PMID: 22806986 Free PMC article.
-
Fluorescence imaging of in vivo miR-124a-induced neurogenesis of neuronal progenitor cells using neuron-specific reporters.EJNMMI Res. 2016 Dec;6(1):38. doi: 10.1186/s13550-016-0190-y. Epub 2016 Apr 26. EJNMMI Res. 2016. PMID: 27115744 Free PMC article.
-
In ovo application of antagomiRs indicates a role for miR-196 in patterning the chick axial skeleton through Hox gene regulation.Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18610-5. doi: 10.1073/pnas.0910374106. Epub 2009 Oct 21. Proc Natl Acad Sci U S A. 2009. PMID: 19846767 Free PMC article.
References
-
- Bartel D.P., Chen C.Z., Chen C.Z. Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 2004;5:396–400. - PubMed
-
- Bylund M., Andersson E., Novitch B.G., Muhr J., Andersson E., Novitch B.G., Muhr J., Novitch B.G., Muhr J., Muhr J. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 2003;6:1162–1168. - PubMed
-
- Chen C.Z., Li L., Lodish H.F., Bartel D.P., Li L., Lodish H.F., Bartel D.P., Lodish H.F., Bartel D.P., Bartel D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–86. - PubMed
-
- Das R.M., Van Hateren N.J., Howell G.R., Farrell E.R., Bangs F.K., Porteous V.C., Manning E.M., McGrew M.J., Ohyama K., Sacco M.A., Van Hateren N.J., Howell G.R., Farrell E.R., Bangs F.K., Porteous V.C., Manning E.M., McGrew M.J., Ohyama K., Sacco M.A., Howell G.R., Farrell E.R., Bangs F.K., Porteous V.C., Manning E.M., McGrew M.J., Ohyama K., Sacco M.A., Farrell E.R., Bangs F.K., Porteous V.C., Manning E.M., McGrew M.J., Ohyama K., Sacco M.A., Bangs F.K., Porteous V.C., Manning E.M., McGrew M.J., Ohyama K., Sacco M.A., Porteous V.C., Manning E.M., McGrew M.J., Ohyama K., Sacco M.A., Manning E.M., McGrew M.J., Ohyama K., Sacco M.A., McGrew M.J., Ohyama K., Sacco M.A., Ohyama K., Sacco M.A., Sacco M.A. A robust system for RNA interference in the chicken using a modified microRNA operon. Dev. Biol. 2006;294:554–563. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical