Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;148(6):2828-34.
doi: 10.1210/en.2006-1606. Epub 2007 Mar 8.

Alcohol exposure during the developmental period induces beta-endorphin neuronal death and causes alteration in the opioid control of stress axis function

Affiliations

Alcohol exposure during the developmental period induces beta-endorphin neuronal death and causes alteration in the opioid control of stress axis function

Dipak K Sarkar et al. Endocrinology. 2007 Jun.

Abstract

Proopiomelanocortin-producing neurons in the arcuate nucleus of the hypothalamus secrete beta-endorphin (beta-EP), which controls varieties of body functions including the feedback regulation of the CRH neuronal activity in the paraventricular nucleus of the hypothalamus. Whether ethanol exposure in developing rats induces beta-EP neuronal death and alters their influence on CRH neurons in vivo has not been determined. We report here that binge-like ethanol exposures in newborn rats increased the number of apoptotic beta-EP neurons in the arcuate nucleus of the hypothalamus. We also found that immediately after ethanol treatments there was a significant reduction in the expression of proopiomelanocortin and adenylyl cyclases mRNA and an increased expression of several TGF-beta1-linked apoptotic genes in beta-EP neurons isolated by laser-captured microdissection from arcuate nuclei of young rats. Several weeks after the ethanol treatment, we detected a reduction in the number of beta-EP neuronal perikarya in arcuate nuclei and in the number of beta-EP neuronal terminals in paraventricular nuclei of the hypothalamus in the treated rats. Additionally, these rats showed increased response of the hypothalamic CRH mRNA to the lipopolysaccharide challenge. The ethanol-treated animals also showed incompetent ability to respond to exogenous beta-EP to alter the lipopolysaccharide-induced CRH mRNA levels. These data suggest that ethanol exposure during the developmental period causes beta-EP neuronal death by cellular mechanisms involving the suppression of cyclic AMP production and activation of TGF-beta1-linked apoptotic signaling and produces long-term structural and functional deficiency of beta-EP neurons in the hypothalamus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources