Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 19;46(6):1903-9.
doi: 10.1021/ic061858d.

Recent progress in Wacker oxidations: moving toward molecular oxygen as the sole oxidant

Affiliations

Recent progress in Wacker oxidations: moving toward molecular oxygen as the sole oxidant

Candace N Cornell et al. Inorg Chem. .

Abstract

Wacker oxidations, the conversion of terminal olefins to methyl ketones with Pd(II) catalysts, have seen widespread use in synthetic applications. Standard synthetic Wacker conditions use catalytic PdCl2 with stoichiometric CuCl under an aerobic atmosphere in a mixed-solvent system of N,N-dimethylformamide and H2O. Though much attention has been directed toward elucidating the rate-determining step and the mechanism of nucleopalladation, the assumption that Cu does not participate in this portion of the catalytic cycle has recently been called into question based on an isolated Pd/Cu bimetallic species and the influence of Cu on product selectivity. Fortunately, recent advancements have been made toward the elimination of Cu additives, thereby alleviating these issues. Success in this area has come from the application of information gained in studying other direct-O2-coupled Pd(II) oxidation systems, including ligand modulation, something which could not be achieved in the presence of Cu. The developments in peroxide-mediated and direct-O2-coupled Wacker oxidations are highlighted herein.

PubMed Disclaimer

Publication types

LinkOut - more resources