Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 16;26(38):5674-9.
doi: 10.1038/sj.onc.1210356. Epub 2007 Mar 12.

Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport

Affiliations

Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport

J Sims-Mourtada et al. Oncogene. .

Abstract

A major obstacle to successful chemotherapy is intrinsic or acquired multi-drug resistance (MDR). The most common cause of MDR involves increased drug efflux from cancer cells mediated by members of the ATP-binding cassette (ABC) transporter family. The regulation of ABC transporters in the context of cancer is poorly understood, and clinical efforts to inhibit their function have not been fruitful. Constitutive activation of the Hedgehog (Hh) pathway has been shown to contribute to the growth and maintenance of various cancers. Here, we show that inhibition of Hh signaling increases the response of cancer cells to multiple structurally unrelated chemotherapies. We further show that Hh pathway activation induces chemoresistance in part by increasing drug efflux in an ABC transporter-dependent manner. We found that Hh signaling regulates the expression of the ABC transporter proteins multi-drug resistance protein-1 (MDR1, ABCB1, P-glycoprotein) and (BCRP, ABCG2), and that targeted knockdown of MDR1 and BCRP expression by small interfering RNA partially reverses Hh-induced chemoresistance. These results suggest that the Hh pathway may be a target to overcome MDR and increase chemotherapeutic response.

PubMed Disclaimer

Publication types

MeSH terms

Substances