Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;54(3):483-91.
doi: 10.1109/TBME.2006.890492.

A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers

Affiliations

A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers

Khalid Ambarki et al. IEEE Trans Biomed Eng. 2007 Mar.

Abstract

Our knowledge of cerebrospinal fluid (CSF) hydrodynamics has been considerably improved with the recent introduction of phase-contrast magnetic resonance imaging (phase-contrast MRI), which can provide CSF and blood flow measurements throughout the cardiac cycle. Key temporal and amplitude parameters can be calculated at different sites to elucidate the role played by the various CSF compartments during vascular brain expansion. Most of the models reported in the literature do not take into account CSF oscillation during the cardiac cycle and its kinetic energy impact on the brain. We propose a new lumped-parameter compartmental model of CSF and blood flows in healthy subjects during the cardiac cycle. The system was divided into five submodels representing arterial blood, venous blood, ventricular CSF, cranial subarachnoid space, and spinal subarachnoid space. These submodels are connected by resistances and compliances. The model developed was used to reproduce certain functional characteristics observed in seven healthy volunteers, such as the distribution (amplitude and phase shift) of arterial, venous, and CSF flows. The results show a good agreement between measured and simulated intracranial CSF and blood flows.

PubMed Disclaimer

LinkOut - more resources