Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;54(3):509-17.
doi: 10.1109/TBME.2006.886664.

A new means of transcutaneous coupling for neural prostheses

Affiliations

A new means of transcutaneous coupling for neural prostheses

Liu Shi Gan et al. IEEE Trans Biomed Eng. 2007 Mar.

Abstract

Neural prostheses are electronic stimulators that activate nerves to restore sensory or motor functions. Implanted neural prostheses receive command signals and in some cases energy to recharge their batteries through the skin by telemetry. Here, we describe a new approach that eliminates the implanted stimulator. Stimulus pulse trains are passed between two surface electrodes placed on the skin. An insulated lead with conductive terminals at each end is implanted inside the body. One terminal is located under the cathodal surface electrode and the other is attached to a nerve targeted for stimulation. A fraction (10%-15%) of the current flowing between the surface electrodes is routed through the implanted lead. The nerve is stimulated when the amount of routed current is sufficient. The aims of this study were to establish some basic electrical properties of the system and test long-term stability in chronic implants. Stimulation of the nerve innervating the ankle flexors produced graded force over the full physiological range at amplitudes below threshold for evoking muscle contractions under the surface electrodes. Implants remained stable for over 8 mo. The findings provide the basis for a new family of neural prostheses.

PubMed Disclaimer

Publication types

LinkOut - more resources