Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1992 Feb;103(2):363-8.

Cerebrovascular and cerebral metabolic effects of alterations in perfusion flow rate during hypothermic cardiopulmonary bypass in man

Affiliations
  • PMID: 1736002
Clinical Trial

Cerebrovascular and cerebral metabolic effects of alterations in perfusion flow rate during hypothermic cardiopulmonary bypass in man

A T Rogers et al. J Thorac Cardiovasc Surg. 1992 Feb.

Abstract

Recent experimental and clinical investigations provide conflicting evidence regarding the effects of changes in the systemic flow rate from the pump oxygenator on cerebral blood flow and the cerebral metabolic rate of oxygen consumption. However, the results of existing clinical studies are difficult to interpret because of the confounding effects of differences in management of arterial carbon dioxide tension and use of anesthetic and vasoactive agents during cardiopulmonary bypass. To clarify the relationship among perfusion flow rate, cerebral blood flow, and cerebral metabolic rate of oxygen consumption in man during hypothermic cardiopulmonary bypass, we varied perfusion flow rate in random order to either 1.75 or 2.25 L.min-1.m-2 and studied cerebral blood flow (measured by clearance of xenon 133) and cerebral metabolic rate of oxygen consumption (estimated as the product of cerebral blood flow and the cerebral arteriovenous oxygen content difference) in patients managed with both the alpha-stat (group 1) and the pH-stat (group 2) methods of pH and arterial carbon dioxide tension adjustment. We measured the cerebral arteriovenous oxygen content difference using radial arterial and jugular venous bulb blood samples. In each patient other variables known to exert effects on cerebral blood flow and cerebral metabolic rate of oxygen consumption, including temperature, arterial carbon dioxide tension, arterial oxygen tension, mean arterial pressure, and hematocrit, were maintained constant between measurements. In both groups, mean arterial pressure at both pump flow rates was similar because of spontaneous reciprocal alterations in systemic vascular resistance, that is, as perfusion flow rate declined, systemic vascular resistance increased; as perfusion flow rate increased, systemic vascular resistance declined. Under these tightly controlled conditions, pump flow variation per se exerted no effect on cerebral blood flow or cerebral metabolic rate of oxygen consumption in either group.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources