Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;44(4):253-63.
doi: 10.1159/000100903. Epub 2007 Mar 15.

Production of inflammatory molecules in peripheral blood mononuclear cells from severely glucose-6-phosphate dehydrogenase-deficient subjects

Affiliations

Production of inflammatory molecules in peripheral blood mononuclear cells from severely glucose-6-phosphate dehydrogenase-deficient subjects

Francesca Sanna et al. J Vasc Res. 2007.

Abstract

Objective: We have previously demonstrated that Mediterranean glucose-6-phosphate dehydrogenase (G6PD)-deficient peripheral blood mononuclear cells (PBMC) respond to mitogenic stimuli with a reduced cholesterol synthesis and growth. In the present study, we have investigated the release of inflammatory molecules by PBMC following a mitogenic stimulus, as well as the transformation to foam cells of monocyte-derived macrophages from severely G6PD-deficient and normal subjects.

Methods and results: PBMC from G6PD-deficient subjects produced interleukin (IL)-1beta and IL-6 to a lower extent compared with normal subjects. 5-Hydroxyeicosatetraenoic acid, a primary product of 5-lipoxygenase, was slightly decreased. Tumour necrosis factor-alpha and IL-1beta secretion was significantly reduced in monocyte-derived macrophages. No difference was found in IL-10 secretion, whereas transforming growth factor-beta was invariably found to be significantly higher in G6PD-deficient cells. In cells incubated with acetylated low-density lipoprotein, cholesterol esterification and its storage in lipid droplets were lower than in normal G6PD cells.

Conclusions: We conclude that by reducing the secretion of inflammatory molecules by PBMC and increasing the secretion of transforming growth factor-beta and the capability of monocyte-derived macrophages to accumulate lipid droplets and convert into foam cells, G6PD deficiency may confer a partial protection against atherosclerosis leading to the reduced risk of cardiovascular diseases reported in G6PD-deficient subjects.

PubMed Disclaimer

Publication types

MeSH terms