Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;17(1):73-85.
doi: 10.1615/critreveukargeneexpr.v17.i1.50.

Transcriptional targets of p53 that regulate cellular proliferation

Affiliations
Review

Transcriptional targets of p53 that regulate cellular proliferation

Lauren Brown et al. Crit Rev Eukaryot Gene Expr. 2007.

Abstract

In response to various forms of cellular stress, including DNA damage, ribonucleotide depletion, and abnormal proliferative signals, p53 becomes activated as a transcription factor, targeted genes that induce cell-cycle arrest and apoptosis. Eliminating damaged, stressed, or abnormally proliferating cells from the replicating cell population prevents the propagation of potentially cancer-prone cells. Here we focus on the transcriptional targets of p53 that regulate the cell cycle. p53 Induction of G1/ S cell-cycle arrest is largely attributed to the transcriptional upregulation of p21WAF1, and more recently, to the transcriptional repression of c-MYC. The role of p53 in G2/M cell-cycle arrest in response to DNA damage is more complex, involving multiple targets that can generally be considered to impinge upon either the cell cycle (e.g., Cyclin-B, cdc2, cdc25C) or the mitotic machinery (i.e., Topoisomerase II, B99/Gtse-1, and MAP4). The ability of p53 to regulate these two type of gene targets may reflect p53-mediated early versus late events in the G2/M cell-cycle arrest response. Together the information presented illustrates the need for further studies to precisely delineate the nature of G2/M cell-cycle arrest in response to cell stress, and defines the role of p53 in what is likely an important mechanism of tumor suppression.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources