Phase I pharmacokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study
- PMID: 17363533
- DOI: 10.1158/1078-0432.CCR-06-1892
Phase I pharmacokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study
Abstract
Purpose: Heat shock protein 90 (Hsp90) is essential for the posttranslational control of many regulators of cell growth, differentiation, and apoptosis. 17-N-Allylamino-17-demethoxygeldanamycin (17-AAG) binds to Hsp90 and alters levels of proteins regulated by Hsp90. We conducted a phase I trial of 17-AAG in pediatric patients with recurrent or refractory neuroblastoma, Ewing's sarcoma, osteosarcoma, and desmoplastic small round cell tumor to determine the maximum tolerated dose, define toxicity and pharmacokinetic profiles, and generate data about molecular target modulation.
Experimental design: Escalating doses of 17-AAG were administered i.v. over 1 to 2 h twice weekly for 2 weeks every 21 days until patients experienced disease progression or toxicity. harmacokinetic and pharmacodynamic studies were done during cycle 1.
Results: Fifteen patients were enrolled onto dose levels between 150 and 360 mg/m(2); 13 patients were evaluable for toxicity. The maximum tolerated dose was 270 mg/m(2). DLTs were grade 3 transaminitis and hypoxia. Two patients with osteosarcoma and bulky pulmonary metastases died during cycle 1 and were not evaluable for toxicity. No objective responses were observed. 17-AAG pharmacokinetics in pediatric patients were linear; clearance and half-life were 21.6 +/- 6.21 (mean +/- SD) L/h/m(2) and 2.6 +/- 0.95 h, respectively. Posttherapy increases in levels of the inducible isoform of Hsp70, a marker of target modulation, were detected in peripheral blood mononuclear cells at all dose levels.
Conclusion: 17-AAG was well tolerated at a dose of 270 mg/m(2) administered twice weekly for 2 of 3 weeks. Caution should be used in treatment of patients with bulky pulmonary disease.
Comment in
-
Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells.Clin Cancer Res. 2007 Mar 15;13(6):1625-9. doi: 10.1158/1078-0432.CCR-06-2966. Clin Cancer Res. 2007. PMID: 17363512 Review. No abstract available.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
