Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 15;67(6):2809-15.
doi: 10.1158/0008-5472.CAN-06-3614.

Angiotensin-(1-7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2

Affiliations

Angiotensin-(1-7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2

Jyotsana Menon et al. Cancer Res. .

Abstract

Angiotensin-(1-7) [Ang-(1-7)] is an endogenous peptide of the renin-angiotensin system with vasodilator and antiproliferative properties. Our previous studies showed that Ang-(1-7) reduced serum-stimulated growth of human lung cancer cells in vitro through activation of a unique AT((1-7)) receptor. The current study investigates the effect of Ang-(1-7) on lung tumor growth in vivo, using a human lung tumor xenograft model. Athymic mice with tumors resulting from injection of A549 human lung cancer cells were treated for 28 days with either i.v. saline or Ang-(1-7), delivered by implanted osmotic mini-pumps. Treatment with Ang-(1-7) reduced tumor volume by 30% compared with the size before treatment; in contrast, tumor size in the saline-treated animals increased 2.5-fold. These results correlate with a reduction in the proliferation marker Ki67 in the Ang-(1-7)-infused tumors when compared with the saline-infused tumor tissues. Treatment with Ang-(1-7) significantly reduced cyclooxygenase-2 (COX-2) mRNA and protein in tumors of Ang-(1-7)-infused mice when compared with mice treated with saline as well as in the parent A549 human lung cancer cells in tissue culture. These results suggest that Ang-(1-7) may decrease COX-2 activity and proinflammatory prostaglandins to inhibit lung tumor growth. In contrast, the heptapeptide had no effect on COX-1 mRNA in xenograft tumors or A549 cells. Because Ang-(1-7), a peptide with antithrombotic properties, reduces growth through activation of a selective AT((1-7)) receptor, our results suggest that the heptapeptide represents a novel treatment for lung cancer by reducing COX-2.

PubMed Disclaimer

Publication types

MeSH terms