General background on the hypothalamic-pituitary-thyroid (HPT) axis
- PMID: 17364704
- DOI: 10.1080/10408440601123446
General background on the hypothalamic-pituitary-thyroid (HPT) axis
Abstract
This article reviews the thyroid system, mainly from a mammalian standpoint. However, the thyroid system is highly conserved among vertebrate species, so the general information on thyroid hormone production and feedback through the hypothalamic-pituitary-thyroid (HPT) axis should be considered for all vertebrates, while species-specific differences are highlighted in the individual articles. This background article begins by outlining the HPT axis with its components and functions. For example, it describes the thyroid gland, its structure and development, how thyroid hormones are synthesized and regulated, the role of iodine in thyroid hormone synthesis, and finally how the thyroid hormones are released from the thyroid gland. It then progresses to detail areas within the thyroid system where disruption could occur or is already known to occur. It describes how thyroid hormone is transported in the serum and into the tissues on a cellular level, and how thyroid hormone is metabolized. There is an in-depth description of the alpha and beta thyroid hormone receptors and their functions, including how they are regulated, and what has been learned from the receptor knockout mouse models. The nongenomic actions of thyroid hormone are also described, such as in glucose uptake, mitochondrial effects, and its role in actin polymerization and vesicular recycling. The article discusses the concept of compensation within the HPT axis and how this fits into the paradigms that exist in thyroid toxicology/endocrinology. There is a section on thyroid hormone and its role in mammalian development: specifically, how it affects brain development when there is disruption to the maternal, the fetal, the newborn (congenital), or the infant thyroid system. Thyroid function during pregnancy is critical to normal development of the fetus, and several spontaneous mutant mouse lines are described that provide research tools to understand the mechanisms of thyroid hormone during mammalian brain development. Overall this article provides a basic understanding of the thyroid system and its components. The complexity of the thyroid system is clearly demonstrated, as are new areas of research on thyroid hormone physiology and thyroid hormone action developing within the field of thyroid endocrinology. This review provides the background necessary to review the current assays and endpoints described in the following articles for rodents, fishes, amphibians, and birds.
Similar articles
-
Implications of research on assays to characterize thyroid toxicants.Crit Rev Toxicol. 2007 Jan-Feb;37(1-2):195-210. doi: 10.1080/10408440601123578. Crit Rev Toxicol. 2007. PMID: 17364709 Review.
-
The hypothalamic-pituitary-thyroid (HPT) axis in birds and its role in bird development and reproduction.Crit Rev Toxicol. 2007 Jan-Feb;37(1-2):163-93. doi: 10.1080/10408440601123552. Crit Rev Toxicol. 2007. PMID: 17364708 Review.
-
The hypothalamic-pituitary-thyroid (HPT) axis in frogs and its role in frog development and reproduction.Crit Rev Toxicol. 2007 Jan-Feb;37(1-2):117-61. doi: 10.1080/10408440601123545. Crit Rev Toxicol. 2007. PMID: 17364707 Review.
-
The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction.Crit Rev Toxicol. 2007 Jan-Feb;37(1-2):97-115. doi: 10.1080/10408440601123529. Crit Rev Toxicol. 2007. PMID: 17364706 Review.
-
Integrating basic research on thyroid hormone action into screening and testing programs for thyroid disruptors.Crit Rev Toxicol. 2007 Jan-Feb;37(1-2):5-10. doi: 10.1080/10408440601123396. Crit Rev Toxicol. 2007. PMID: 17364703 Review.
Cited by
-
Lead exposure causes thyroid abnormalities in diabetic rats.Int J Clin Exp Med. 2015 May 15;8(5):7160-7. eCollection 2015. Int J Clin Exp Med. 2015. PMID: 26221254 Free PMC article.
-
Organizational changes to thyroid regulation in Alligator mississippiensis: evidence for predictive adaptive responses.PLoS One. 2013;8(1):e55515. doi: 10.1371/journal.pone.0055515. Epub 2013 Jan 30. PLoS One. 2013. PMID: 23383213 Free PMC article.
-
A 24-Hour Study of the Hypothalamo-Pituitary Axes in Huntington's Disease.PLoS One. 2015 Oct 2;10(10):e0138848. doi: 10.1371/journal.pone.0138848. eCollection 2015. PLoS One. 2015. PMID: 26431314 Free PMC article.
-
Limited Chemical Structural Diversity Found to Modulate Thyroid Hormone Receptor in the Tox21 Chemical Library.Environ Health Perspect. 2019 Sep;127(9):97009. doi: 10.1289/EHP5314. Epub 2019 Sep 30. Environ Health Perspect. 2019. PMID: 31566444 Free PMC article.
-
Selected Essential and Toxic Chemical Elements in Hypothyroidism-A Literature Review (2001-2021).Int J Mol Sci. 2021 Sep 20;22(18):10147. doi: 10.3390/ijms221810147. Int J Mol Sci. 2021. PMID: 34576309 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources