Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;115(1):5-12.
doi: 10.1289/ehp.9456.

Ethical and scientific issues of nanotechnology in the workplace

Affiliations

Ethical and scientific issues of nanotechnology in the workplace

Paul A Schulte et al. Environ Health Perspect. 2007 Jan.

Abstract

In the absence of scientific clarity about the potential health effects of occupational exposure to nanoparticles, a need exists for guidance in decisionmaking about hazards, risks, and controls. An identification of the ethical issues involved may be useful to decision makers, particularly employers, workers, investors, and health authorities. Because the goal of occupational safety and health is the prevention of disease in workers, the situations that have ethical implications that most affect workers have been identified. These situations include the a) identification and communication of hazards and risks by scientists, authorities, and employers; b) workers' acceptance of risk; c) selection and implementation of controls; d) establishment of medical screening programs; and e) investment in toxicologic and control research. The ethical issues involve the unbiased determination of hazards and risks, nonmaleficence (doing no harm), autonomy, justice, privacy, and promoting respect for persons. As the ethical issues are identified and explored, options for decision makers can be developed. Additionally, societal deliberations about workplace risks of nanotechnologies may be enhanced by special emphasis on small businesses and adoption of a global perspective.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Risk management decisionmaking for nanoparticles in the workplace: what is the appropriate level of controls?

Similar articles

Cited by

  • Potential applications for photoacoustic imaging using functional nanoparticles: A comprehensive overview.
    Neelamraju PM, Gundepudi K, Sanki PK, Busi KB, Mistri TK, Sangaraju S, Dalapati GK, Ghosh KK, Ghosh S, Ball WB, Chakrabortty S. Neelamraju PM, et al. Heliyon. 2024 Jul 17;10(15):e34654. doi: 10.1016/j.heliyon.2024.e34654. eCollection 2024 Aug 15. Heliyon. 2024. PMID: 39166037 Free PMC article. Review.
  • Technology Roadmap of Micro/Nanorobots.
    Ju X, Chen C, Oral CM, Sevim S, Golestanian R, Sun M, Bouzari N, Lin X, Urso M, Nam JS, Cho Y, Peng X, Landers FC, Yang S, Adibi A, Taz N, Wittkowski R, Ahmed D, Wang W, Magdanz V, Medina-Sánchez M, Guix M, Bari N, Behkam B, Kapral R, Huang Y, Tang J, Wang B, Morozov K, Leshansky A, Abbasi SA, Choi H, Ghosh S, Borges Fernandes B, Battaglia G, Fischer P, Ghosh A, Jurado Sánchez B, Escarpa A, Martinet Q, Palacci J, Lauga E, Moran J, Ramos-Docampo MA, Städler B, Herrera Restrepo RS, Yossifon G, Nicholas JD, Ignés-Mullol J, Puigmartí-Luis J, Liu Y, Zarzar LD, Shields CW 4th, Li L, Li S, Ma X, Gracias DH, Velev O, Sánchez S, Esplandiu MJ, Simmchen J, Lobosco A, Misra S, Wu Z, Li J, Kuhn A, Nourhani A, Maric T, Xiong Z, Aghakhani A, Mei Y, Tu Y, Peng F, Diller E, Sakar MS, Sen A, Law J, Sun Y, Pena-Francesch A, Villa K, Li H, Fan DE, Liang K, Huang TJ, Chen XZ, Tang S, Zhang X, Cui J, Wang H, Gao W, Kumar Bandari V, Schmidt OG, Wu X, Guan J, Sitti M, Nelson BJ, Pané S, Zhang L, Shahsavan H, He Q, Kim ID, Wang J, Pumera M. Ju X, et al. ACS Nano. 2025 Jul 15;19(27):24174-24334. doi: 10.1021/acsnano.5c03911. Epub 2025 Jun 27. ACS Nano. 2025. PMID: 40577644 Free PMC article. Review.
  • Nanotechnology development in surgical applications: recent trends and developments.
    Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Abaszadeh F, et al. Eur J Med Res. 2023 Nov 24;28(1):537. doi: 10.1186/s40001-023-01429-4. Eur J Med Res. 2023. PMID: 38001554 Free PMC article. Review.
  • Taking stock of the occupational safety and health challenges of nanotechnology: 2000-2015.
    Schulte PA, Roth G, Hodson LL, Murashov V, Hoover MD, Zumwalde R, Kuempel ED, Geraci CL, Stefaniak AB, Castranova V, Howard J. Schulte PA, et al. J Nanopart Res. 2016 Jun;18:159. doi: 10.1007/s11051-016-3459-1. Epub 2016 Jun 14. J Nanopart Res. 2016. PMID: 27594804 Free PMC article.
  • Nanoethics in a nanolab: ethics via participation.
    Tuma JR. Tuma JR. Sci Eng Ethics. 2013 Sep;19(3):983-1005. doi: 10.1007/s11948-013-9449-0. Epub 2013 May 22. Sci Eng Ethics. 2013. PMID: 23695660

References

    1. ACGIH
    1. Aitken RJ, Creely KS, Tran CL. 2004. Nanoparticles: An Occupational Hygiene Review. Health Safety Executive, Research Report 274. London:HSE Books.
    1. Ashford NA, Spadafor CJ, Hattis DB, Caldart CC. 1990. Monitoring the Worker for Exposure and Disease: Scientific Legal and Ethical Considerations in the Use of Biomarkers. Baltimore, MD:The Johns Hopkins University Press.
    1. American Society for Testing and Materials. http://www.astm.org/cgi-bin/SoftCart.exe/DATABASE.CART/WORKITEMS/WK8051....
    1. Bartis JT, Landree E. 2006. Nanomaterials in the Workplace: Policy and Planning Workshop on Occupational Safety and Health. Arlington, VA:RAND Corporation.