Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;3(3):e34.
doi: 10.1371/journal.ppat.0030034.

Population genomics of the immune evasion (var) genes of Plasmodium falciparum

Affiliations

Population genomics of the immune evasion (var) genes of Plasmodium falciparum

Alyssa E Barry et al. PLoS Pathog. 2007 Mar.

Abstract

Var genes encode the major surface antigen (PfEMP1) of the blood stages of the human malaria parasite Plasmodium falciparum. Differential expression of up to 60 diverse var genes in each parasite genome underlies immune evasion. We compared the diversity of the DBLalpha domain of var genes sampled from 30 parasite isolates from a malaria endemic area of Papua New Guinea (PNG) and 59 from widespread geographic origins (global). Overall, we obtained over 8,000 quality-controlled DBLalpha sequences. Within our sampling frame, the global population had a total of 895 distinct DBLalpha "types" and negligible overlap among repertoires. This indicated that var gene diversity on a global scale is so immense that many genomes would need to be sequenced to capture its true extent. In contrast, we found a much lower diversity in PNG of 185 DBLalpha types, with an average of approximately 7% overlap among repertoires. While we identify marked geographic structuring, nearly 40% of types identified in PNG were also found in samples from different countries showing a cosmopolitan distribution for much of the diversity. We also present evidence to suggest that recombination plays a key role in maintaining the unprecedented levels of polymorphism found in these immune evasion genes. This population genomic framework provides a cost effective molecular epidemiological tool to rapidly explore the geographic diversity of var genes.

PubMed Disclaimer

Conflict of interest statement

Competing interests. The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Cumulative Diversity Curves for DBLα from the Amele and Global Populations
The cumulative diversity of DBLα was determined by comparing each new DBLα repertoire to previous repertoire(s) using a 96% DNA sequence identity cut-off. We plotted the number of accumulating “types” (distinct sequences) against the number of “sequences” compared. For example, the first point on the plot will be the number of types found in both isolates A and B on the y-axis against the total number of sequences compared on the x-axis. The next point will be the number of types found in isolates A, B, and C against the total number of sequences compared. The plot shown here is the average curve of 1,000 permutations of the order that isolates were compared (i.e., isolates A, B, then C; or A, C, then B; or B, C, then A).
Figure 2
Figure 2. PTS among DBLα Repertoires from Amele and Global Populations
PTS was plotted for pairs of Amele DBLα repertoires, global DBLα repertoires, and Amele DBLα repertoires paired with global DBLα repertoires. The median (thick line), interquartile range (boxes), approximate 95% sampling interval (whiskers = 1.5 times the interquartile range), and suspected outliers (asterisks) are shown. The raw data for these plots can be found in Figure S5.
Figure 3
Figure 3. Diversity of Amele DBLα Sequences
Relationships among the var gene sequences from Amele were defined by (A) phylogenetic analysis of Amele DBLα types. A multiple alignment of amino acid sequences was constructed in Clustal W [70] with parameters set at gap opening = 5 and gap extension = 0.05, for all translated DBLα types (n = 177 after removal of those with frame shifts) in the Amele population. A neighbor-joining tree was constructed in MEGA version 3.0 [71] for Amele types using the p-distance algorithm, pairwise alignment, and 1,000 bootstrapping repetitions. The consensus tree is shown. (B) Analysis of the pairwise alignment quality scores for Amele DBLα amino acid sequences. Here, the frequency distribution of scores is shown. Note the approximately Normal distribution of scores for the cluster of scores to the left, i.e., the dark line indicates maximum likelihood estimate for the Normal distribution. The asterisk indicates a cluster of pairs with high quality scores, which correspond to the shared sequences among isolates (types).

Similar articles

Cited by

References

    1. McCutchan FE, Artenstein AW, Sanders-Buell E, Salminen MO, Carr JK, et al. Diversity of the envelope glycoprotein among human immunodeficiency virus type 1 isolates of clade E from Asia and Africa. J Virol. 1996;70:3331–3338. - PMC - PubMed
    1. Zambon MC. Epidemiology and pathogenesis of influenza. J Antimicrob Chemother. 1999;44(Suppl B):3–9. - PubMed
    1. Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, et al. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995;82:77–87. - PubMed
    1. Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995;82:101–110. - PMC - PubMed
    1. Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt J A, et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995;82:89–100. - PubMed

Publication types

Substances