Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;103(3-5):316-21.
doi: 10.1016/j.jsbmb.2006.12.078.

Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease

Affiliations

Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease

Martin Hewison et al. J Steroid Biochem Mol Biol. 2007 Mar.

Abstract

Although ectopic expression of 25-hydroxyvitamin D(3)-1alpha-hydroxylase (1alpha-OHase) has been recognized for many years, the precise function of this enzyme outside the kidney remains open to debate. Three specific aspects of extra-renal 1alpha-OHase have attracted most attention: (i) expression and regulation in non-classical tissues during normal physiology; (ii) effects on the immune system and inflammatory disease; (iii) expression and function in tumors. The most well-recognized manifestation of extra-renal 1alpha-OHase activity remains that found in some patients with granulomatous diseases where locally synthesized 1alpha,25(OH)(2)D(3) has the potential to spill-over into the general circulation. However, immunohistochemistry and mRNA analyses suggest that 1alpha-OHase is also expressed by a variety of normal human tissues including the gastrointestinal tract, skin, vasculature and placenta. This has promoted the idea that autocrine/paracrine synthesis of 1,25(OH)(2)D(3) contributes to normal physiology, particularly in mediating the potent effects of vitamin D on innate (macrophage) and acquired (dendritic cell) immunity. We have assessed the capacity for synthesis of 1,25(OH)(2)D(3) in these cells and the functional significance of autocrine responses to 1alpha-hydroxylase. Data suggest that local synthesis of 1,25(OH)(2)D(3) may be a preferred mode of response to antigenic challenge in many tissues.

PubMed Disclaimer

Substances

LinkOut - more resources