Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;65(4):728-34.
doi: 10.1016/j.joms.2006.04.001.

Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities

Affiliations

Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities

Jaime Gateno et al. J Oral Maxillofac Surg. 2007 Apr.

Abstract

Purpose: The purpose of this study was to establish clinical feasibility of our 3-dimensional computer-aided surgical simulation (CASS) for complex craniomaxillofacial surgery.

Materials and methods: Five consecutive patients with complex craniomaxillofacial deformities, including hemifacial microsomia, defects after tumor ablation, and deformity after TMJ reconstruction, were used. The patients' surgical interventions were planned by using the authors' CASS planning method. Computed tomography (CT) was initially obtained. The first step of the planning process was to create a composite skull model, which reproduces both the bony structures and the dentition with a high degree of accuracy. The second step was to quantify the deformity. The third step was to simulate the entire surgery in the computer. The maxillary osteotomy was usually completed first, followed by mandibular and chin surgeries. The shape and size of the bone graft, if needed, was also simulated. If the simulated outcomes were not satisfactory, the surgical plan could be modified and simulation could be started over. The final step was to create surgical splints. Using the authors' computer-aided designing/manufacturing techniques, the surgical splints and templates were designed in the computer and fabricated by a stereolithographic apparatus. To minimize the potential risks to the patients, the surgeries were also planned following the current planning methods, and acrylic surgical splints were created as a backup plan.

Results: All 5 patients were successfully planned using our CASS planning method. The computer-generated surgical splints were successfully used on all patients at the time of the surgery. The backup acrylic surgical splints and plans were never used. Six-week postoperative CT scans showed the surgical plans were precisely reproduced in the operating room and the deformities were corrected as planned.

Conclusion: The results of this study have shown the clinical feasibility of our CASS planning method. Using our CASS method, we were able to treat patients with significant asymmetries in a single operation that in the past was usually completed in 2 stages. We were also able to simulate different surgical procedures to create the appropriate plan. The computerized surgical plan was then transferred to the patient in the operating room using computer-generated surgical splints.

PubMed Disclaimer

Publication types

LinkOut - more resources