Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May 25:1147:124-39.
doi: 10.1016/j.brainres.2007.02.016. Epub 2007 Feb 21.

Plastic and metaplastic changes in the CA1 and subicular projections to the entorhinal cortex

Affiliations

Plastic and metaplastic changes in the CA1 and subicular projections to the entorhinal cortex

Sarah Craig et al. Brain Res. .

Abstract

The hippocampal formation (HF) is a brain structure critically involved in memory formation. Two major pathways have been identified in the rat; one projection targets the hippocampus via perirhinal cortex and lateral entorhinal cortex (LEC) while another targets the hippocampus via postrhinal cortex and medial entorhinal cortex (MEC). Areas CA1 and subiculum constitute major output structures of HF and target many cortical structures including EC. These return projections are also anatomically segregated with distinct regions of CA1 and subiculum projecting to either the LEC or MEC. We have previously demonstrated that the projections from CA1 and subiculum to the EC are capable of sustaining short- and long-term plastic changes. Here we detail a physiological topography that exists along the hippocampal output projections, equating well with the known anatomy. Specifically, field excitatory postsynaptic potential (fEPSP) responses in LEC are stronger following distal CA1 and proximal subiculum stimulation, compared to either proximal CA1 or distal subiculum stimulation. In addition, fEPSP responses in MEC are stronger following proximal CA1 stimulation compared to distal CA1. We also demonstrate that the distal CA1-LEC, proximal CA1-MEC and proximal subiculum-LEC projections are all capable of frequency-dependent plastic effects that shift the response from LTD to LTP. In addition, responses in distal CA1-LEC projection seem to show metaplastic capabilities. We discuss the possibility of dissociation between LEC and MEC projections, which may suggest two functional circuits from the HF to the cortex and may have implications in information processing, memory research and hippocampal seizure spread to the cortex.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources