Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase
- PMID: 17369436
- PMCID: PMC1913781
- DOI: 10.1104/pp.106.093021
Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase
Abstract
The symbiotic association between legumes and nitrogen-fixing bacteria collectively known as rhizobia results in the formation of a unique plant root organ called the nodule. This process is initiated following the perception of rhizobial nodulation factors by the host plant. Nod factor (NF)-stimulated plant responses, including nodulation-specific gene expression, is mediated by the NF signaling pathway. Plant mutants in this pathway are unable to nodulate. We describe here the cloning and characterization of two mutant alleles of the Medicago truncatula ortholog of the Lotus japonicus and pea (Pisum sativum) NIN gene. The Mtnin mutants undergo excessive root hair curling but are impaired in infection and fail to form nodules following inoculation with Sinorhizobium meliloti. Our investigation of early NF-induced gene expression using the reporter fusion ENOD11::GUS in the Mtnin-1 mutant demonstrates that MtNIN is not essential for early NF signaling but may negatively regulate the spatial pattern of ENOD11 expression. It was recently shown that an autoactive form of a nodulation-specific calcium/calmodulin-dependent protein kinase is sufficient to induce nodule organogenesis in the absence of rhizobia. We show here that MtNIN is essential for autoactive calcium/calmodulin-dependent protein kinase-induced nodule organogenesis. The non-nodulating hcl mutant has a similar phenotype to Mtnin, but we demonstrate that HCL is not required in this process. Based on our data, we suggest that MtNIN functions downstream of the early NF signaling pathway to coordinate and regulate the correct temporal and spatial formation of root nodules.
Figures
References
-
- Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GED, Ayax C, Lévy J, Debellé F, Baek JM, Kalé P, et al (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303 1364–1367 - PubMed
-
- Ardourel M, Demont N, Debellé FD, Maillet F, Debilly F, Promé JC, Dénarié J, Truchet G (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair-cells and induction of plant symbiotic developmental responses. Plant Cell 6 1357–1374 - PMC - PubMed
-
- Bauer P, Ratet P, Crespi MD, Schultze M, Kondorosi A (1996) Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnod12A expression patterns in alfalfa roots. Plant J 10 91–105
-
- Ben Amor B, Shaw SL, Oldroyd GED, Maillet F, Penmetsa RV, Cook D, Long SR, Dénarié J, Gough C (2003) The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J 34 495–506 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
