Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:93:24-41.
doi: 10.1159/000100856.

Diversity in Staphylococcus aureus enterotoxins

Affiliations
Review

Diversity in Staphylococcus aureus enterotoxins

Damien Thomas et al. Chem Immunol Allergy. 2007.

Abstract

The molecular mechanism of Staphylococcus aureus phathogenicity is complex and involves several toxins, including the famous staphylococcal enterotoxin (SE) and toxic shock syndrome toxin-1 (TSST-1). Although these toxins were discovered in specific clinical contexts of food poisoning and menstrual toxic shock syndrome, they share common biochemical and biological properties. As superantigens they are able to massively activate mononuclear cells and T cells regardless of the antigenic specificity of the T cells. To date, 19 different enterotoxins and related toxins have been described in S. aureus with some differences in structure and biological activity. It has been clearly demonstrated that most human S. aureus isolates harbor at least one gene encoding for these toxins. It is suspected that S. aureus produces SEs and TSST-1 in humans from colonization to infection, whatever the clinical situation. It is proposed that the production of SEs plays a role not only in classical staphylococcal infections but also in noninfectious diseases. This review will focus on recent findings related to staphylococcal superantigens and their impact on human diseases.

PubMed Disclaimer

LinkOut - more resources