Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;47(1):124-32.

Changes in fast-twitch muscle oxidative capacity and myosin isoforms modulation during endurance training

Affiliations
  • PMID: 17369809

Changes in fast-twitch muscle oxidative capacity and myosin isoforms modulation during endurance training

T Seene et al. J Sports Med Phys Fitness. 2007 Mar.

Abstract

Aim: The purpose of this study was to investigate the effect of endurance training on changes in myosin heavy (MyHC) and light (MyLC) chains expression, their turnover rate in fast-twitch (FT) skeletal muscles, and relations with changes in contractile proteins degradation rate and muscle oxidative capacity.

Methods: Wistar rats were run at 35 m/min for 6 weeks (from 10 min to 60 min per day, from 1.8 kJ to 7 kJ per training session and power of work was 1.5 W). The FT muscles were used for measurement of myosin isoforms and oxidative capacity. Double isotope method ((3)H/(14)C) was used.

Results: During endurance training in plantaris and extensor digitorum longus (EDL) muscles the relative content of MyHC IIb isoform decreased while there was an increase in the relative content of MyHC IIa and IId isoforms. MyLC 3(fast) isoform increased in FT muscles. Degradation rate of MyHC isoforms increased during endurance training simultaneously with the increase of contractile proteins degradation and increase of cytochrome aa3 content in FT muscles. Endurance training increased MyHC I, IIa and IId isoform turnover rate, whereas MyHC IIb and MyLC isoforms turnover rate did not change significantly.

Conclusions: Adaptation of FT skeletal muscles to endurance training shows coordination between increase in oxidative capacity and faster turnover rate of MyHC isoforms in contractile apparatus. FT muscles show high potential of recruitment in endurance training.

PubMed Disclaimer

Publication types