Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep 6;26(41):5991-6001.
doi: 10.1038/sj.onc.1210423. Epub 2007 Mar 19.

Characterization of Jumping translocation breakpoint (JTB) gene product isolated as a TGF-beta1-inducible clone involved in regulation of mitochondrial function, cell growth and cell death

Affiliations

Characterization of Jumping translocation breakpoint (JTB) gene product isolated as a TGF-beta1-inducible clone involved in regulation of mitochondrial function, cell growth and cell death

T Kanome et al. Oncogene. .

Abstract

Jumping translocation breakpoint (JTB) is a gene located on human chromosome 1 at q21 that suffers an unbalanced translocation in various types of cancers, and potentially encodes a transmembrane protein of unknown function. The results of cancer profiling indicated that its expression was suppressed in many cancers from different organs, implying a role in the neoplastic transformation of cells. Recently, we isolated JTB as a TGF-beta1-inducible clone by differential screening. In this study, we characterized its product and biological functions. We found that it was processed at the N-terminus and located mostly in mitochondria. When expressed in cells, JTB-induced clustering of mitochondria around the nuclear periphery and swelling of each mitochondrion. In those mitochondria, membrane potential, as monitored with a JC-1 probe, was significantly reduced. Coinciding with these changes in mitochondria, JTB retarded the growth of the cells and conferred resistance to TGF-beta1-induced apoptosis. These activities were dependent on the N-terminal processing and induced by wild-type JTB but not by a mutant resistant to cleavage. These findings raised the possibility that aberration of JTB in structure or expression induced neoplastic changes in cells through dysfunction of mitochondria leading to deregulated cell growth and/or death.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms