An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus
- PMID: 17371405
- DOI: 10.1111/j.1462-5822.2007.00895.x
An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus
Abstract
Pulmonary infections due to Aspergillus fumigatus result from the development of a colony of tightly associated hyphae in contact with the air, either in the alveoli (invasive aspergillosis) or in an existing cavity (aspergilloma). The fungal ball observed in vivo resembles an aerial colony obtained in agar medium in vitro more than a mycelial mass obtained in liquid shaken conditions that have been classically used to date to study A. fumigatus physiology. For this reason, we embarked on an analysis of the characteristics of A. fumigatus colonies grown in aerial static conditions. (i) Under static aerial conditions, mycelial growth is greater than in shaken, submerged conditions. (ii) The colony surface of A. fumigatus revealed the presence of an extracellular hydrophobic matrix that acts as a cohesive linkage bonding hyphae into a contiguous sheath. (iii) The extracellular matrix is composed of galactomannan, alpha1,3 glucans, monosaccharides and polyols, melanin and proteins including major antigens and hydrophobins. (iv) A. fumigatus colonies were more resistant to polyenes than shake, submerged mycelium. This is the first analysis of the three dimensional structure of a mycelial colony. Knowledge of this multicellular organization will impact our future understanding of the pathobiology of aerial mold pathogens.
Similar articles
-
Aspergillus fumigatus biofilms in the clinical setting.Med Mycol. 2011 Apr;49 Suppl 1:S96-S100. doi: 10.3109/13693786.2010.502190. Epub 2011 Jan 24. Med Mycol. 2011. PMID: 21254964 Review.
-
Aspergillus Biofilm In Vitro and In Vivo.Microbiol Spectr. 2015 Aug;3(4). doi: 10.1128/microbiolspec.MB-0017-2015. Microbiol Spectr. 2015. PMID: 26350307 Review.
-
Development of a ligand-directed approach to study the pathogenesis of invasive aspergillosis.Infect Immun. 2005 Nov;73(11):7747-58. doi: 10.1128/IAI.73.11.7747-7758.2005. Infect Immun. 2005. PMID: 16239579 Free PMC article.
-
Investigation of Aspergillus fumigatus biofilm formation by various "omics" approaches.Front Microbiol. 2013 Feb 12;4:13. doi: 10.3389/fmicb.2013.00013. eCollection 2013. Front Microbiol. 2013. PMID: 23407341 Free PMC article.
-
Quantitative Monitoring of Mycelial Growth of Aspergillus fumigatus in Liquid Culture by Optical Density.Microbiol Spectr. 2022 Feb 23;10(1):e0006321. doi: 10.1128/spectrum.00063-21. Epub 2022 Jan 5. Microbiol Spectr. 2022. PMID: 34985327 Free PMC article.
Cited by
-
Fungal biofilm formation and its regulatory mechanism.Heliyon. 2024 Jun 12;10(12):e32766. doi: 10.1016/j.heliyon.2024.e32766. eCollection 2024 Jun 30. Heliyon. 2024. PMID: 38988529 Free PMC article. Review.
-
Interaction of the echinocandin caspofungin with amphotericin B or voriconazole against Aspergillus biofilms in vitro.Antimicrob Agents Chemother. 2012 Dec;56(12):6414-6. doi: 10.1128/AAC.00687-12. Epub 2012 Oct 1. Antimicrob Agents Chemother. 2012. PMID: 23027186 Free PMC article.
-
Immunoproteome of Aspergillus fumigatus using sera of patients with invasive aspergillosis.Int J Mol Sci. 2014 Aug 20;15(8):14505-30. doi: 10.3390/ijms150814505. Int J Mol Sci. 2014. PMID: 25141105 Free PMC article.
-
Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus.PLoS Pathog. 2011 Nov;7(11):e1002372. doi: 10.1371/journal.ppat.1002372. Epub 2011 Nov 10. PLoS Pathog. 2011. PMID: 22102815 Free PMC article.
-
3,5-Dicaffeoylquinic Acid Disperses Aspergillus Fumigatus Biofilm and Enhances Fungicidal Efficacy of Voriconazole and Amphotericin B.Med Sci Monit. 2018 Jan 22;24:427-437. doi: 10.12659/msm.908068. Med Sci Monit. 2018. PMID: 29356802 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical