Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr 1;178(7):4489-97.
doi: 10.4049/jimmunol.178.7.4489.

Factor H binding and function in sialylated pathogenic neisseriae is influenced by gonococcal, but not meningococcal, porin

Affiliations

Factor H binding and function in sialylated pathogenic neisseriae is influenced by gonococcal, but not meningococcal, porin

Guillermo Madico et al. J Immunol. .

Abstract

Neisseria gonorrhoeae and Neisseria meningitidis both express the lacto-N-neotetraose (LNT) lipooligosaccharide (LOS) molecule that can be sialylated. Although gonococcal LNT LOS sialylation enhances binding of the alternative pathway complement inhibitor factor H and renders otherwise serum-sensitive bacteria resistant to complement-dependent killing, the role of LOS sialylation in meningococcal serum resistance is less clear. We show that only gonococcal, but not meningococcal, LNT LOS sialylation enhanced factor H binding. Replacing the porin (Por) B molecule of a meningococcal strain (LOS sialylated) that did not bind factor H with gonococcal Por1B augmented factor H binding. Capsule expression did not alter factor H binding to meningococci that express gonococcal Por. Conversely, replacing gonococcal Por1B with meningococcal PorB abrogated factor H binding despite LNT LOS sialylation. Gonococcal Por1B introduced in the background of an unsialylated meningococcus itself bound small amounts of factor H, suggesting a direct factor H-Por1B interaction. Factor H binding to unsialylated meningococci transfected with gonococcal Por1B was similar to the sialylated counterpart only in the presence of higher (20 microg/ml) concentrations of factor H and decreased in a dose-responsive manner by approximately 80% at 1.25 microg/ml. Factor H binding to the sialylated strain remained unchanged over this factor H concentration range however, suggesting that LOS sialylation facilitated optimal factor H-Por1B interactions. The functional counterpart of factor H binding showed that sialylated meningococcal mutants that possessed gonococcal Por1B were resistant to complement-mediated killing by normal human serum. Our data highlight the different mechanisms used by these two related species to evade complement.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources