Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;45(3):261-7.

Osmotic adjustment increases water uptake, remobilization of assimilates and maintains photosynthesis in chickpea under drought

Affiliations
  • PMID: 17373371

Osmotic adjustment increases water uptake, remobilization of assimilates and maintains photosynthesis in chickpea under drought

P S Basu et al. Indian J Exp Biol. 2007 Mar.

Abstract

Eight chickpea advanced breeding lines (ABLs) and their parents were evaluated for osmotic adjustment (OA), leaf carbohydrates and gas exchange under dryland field . These (ABLs) were derived from crosses between CTS 60543 x Kaniva and Tyson x Kaniva. Mean leaf water potential (LWP) fell down from -1.00 MPa at pre-stress level to about -2.25 MPa during terminal stress. Relative water content (RWC) showed periodic changes with alternate decrease or increase at certain interval, which also influenced the values of OA (low or high) in number of genotypes e.g. Kaniva, CTS 60543, Tyson and M 75. Significant variation in OA ranging 0.45 to 0.88 MPa was observed at high level of stress at -2.5 MPa. However, none of the genotypes showed stability of OA over the period of stress. Leaf starch declined even at mild stress (LWP, -1.6 MPa) resulting in an increase in hexose sugars and activation state of sucrose-phosphate synthase (SPS) that led to accumulation of sucrose. Both photosynthesis (Pmax) and transpiration decreased concurrently in two chickpea lines M 129 and Tyson with increasing water stress. However, rate of decline in the photosynthesis slowed down even drought was further intensified. The observed periodic changes in OA, RWC and photosynthesis appeared to be associated with drought-induced changes in SPS and carbohydrates which modify water uptake of the leaves.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources