Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr 5;446(7136):685-9.
doi: 10.1038/nature05673. Epub 2007 Mar 21.

Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1

Affiliations

Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1

Masahiro Ono et al. Nature. .

Abstract

Naturally arising CD25+CD4+ regulatory T cells (T(R) cells) are engaged in the maintenance of immunological self-tolerance and immune homeostasis by suppressing aberrant or excessive immune responses, such as autoimmune disease and allergy. T(R) cells specifically express the transcription factor Foxp3, a key regulator of T(R)-cell development and function. Ectopic expression of Foxp3 in conventional T cells is indeed sufficient to confer suppressive activity, repress the production of cytokines such as interleukin-2 (IL-2) and interferon-gamma (IFN-gamma), and upregulate T(R)-cell-associated molecules such as CD25, cytotoxic T-lymphocyte-associated antigen-4, and glucocorticoid-induced TNF-receptor-family-related protein. However, the method by which Foxp3 controls these molecular events has yet to be explained. Here we show that the transcription factor AML1 (acute myeloid leukaemia 1)/Runx1 (Runt-related transcription factor 1), which is crucially required for normal haematopoiesis including thymic T-cell development, activates IL-2 and IFN-gamma gene expression in conventional CD4+ T cells through binding to their respective promoters. In natural T(R) cells, Foxp3 interacts physically with AML1. Several lines of evidence support a model in which the interaction suppresses IL-2 and IFN-gamma production, upregulates T(R)-cell-associated molecules, and exerts suppressive activity. This transcriptional control of T(R)-cell function by an interaction between Foxp3 and AML1 can be exploited to control physiological and pathological T-cell-mediated immune responses.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms