Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;153(Pt 4):1123-1130.
doi: 10.1099/mic.0.2006/001768-0.

Divergent polyamine metabolism in the Apicomplexa

Affiliations
Free article

Divergent polyamine metabolism in the Apicomplexa

Tuesday Cook et al. Microbiology (Reading). 2007 Apr.
Free article

Abstract

The lead enzymes of polyamine biosynthesis, i.e. ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), were not detected in Toxoplasma gondii [the limit of detection for ODC and ADC was 5 pmol min(-1) (mg protein)(-1)], indicating that T. gondii lacks a forward-directed polyamine biosynthetic pathway, and is therefore a polyamine auxotroph. The biochemical results were supported by results obtained from data-mining the T. gondii genome. However, it was possible to demonstrate the presence of a highly active backconversion pathway that formed spermidine from spermine, and putrescine from spermidine, via the combined action of spermidine/spermine N(1)-acetyltransferase (SSAT) or spermidine N(1)-acetyltransferase (SAT) and polyamine oxidase (PAO). With spermine as the substrate, T. gondii SSAT had a specific activity of 1.84 nmol min(-1) (mg protein)(-1), and an apparent K(m) for spermine of 180 mM; with spermidine as the substrate, the SAT had a specific activity of 3.95 nmol min(-1) (mg protein)(-1), and a K(m) for spermidine of 240 mM. T. gondii PAO had a specific activity of 10.6 nmol min(-1) (mg protein)(-1), and a K(m) for acetylspermine of 36 mM. Furthermore, the results demonstrated that T. gondii SSAT was 50 % inhibited by 30 mM di(ethyl)norspermine. The parasite actively transported arginine and ornithine, which were converted via the arginine dihydrolase pathway to citrulline and carbamoyl phosphate, resulting in the formation of ATP via carbamate kinase. The lack of polyamine biosynthesis by T. gondii is contrasted with polyamine metabolism by other apicomplexans.

PubMed Disclaimer

Publication types

LinkOut - more resources