Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;46(15):2578-92.
doi: 10.1002/anie.200603224.

The sigma-CAM Mechanism: sigma complexes as the basis of sigma-bond metathesis at late-transition-metal centers

Affiliations

The sigma-CAM Mechanism: sigma complexes as the basis of sigma-bond metathesis at late-transition-metal centers

Robin N Perutz et al. Angew Chem Int Ed Engl. 2007.

Abstract

Complexes in which a sigma-H--E bond (E=H, B, Si, C) acts as a two-electron donor to the metal center are called sigma complexes. Clues that it is possible to interconvert sigma ligands without a change in oxidation state derive from C--H activation reactions effecting isotope exchange and from dynamic rearrangements of sigma complexes (see Frontispiece). Through these pathways, metathesis of M--E bonds can occur at late transition metals. We call this process sigma-complex-assisted metathesis, or sigma-CAM, which is distinct from the familiar sigma-bond metathesis (typical for d(0) metals and requiring no intermediate) and from oxidative-reductive elimination mechanisms (inherently requiring intermediates with changed oxidation states and sometimes involving sigma complexes). There are examples of sigma-CAM mechanisms in catalysis, especially for alkane borylation and isotope exchange of alkanes. It may also occur in silylation and alkene hydrogenation.

PubMed Disclaimer

LinkOut - more resources