Structural studies of the purine and SAM binding riboswitches
- PMID: 17381305
- DOI: 10.1101/sqb.2006.71.015
Structural studies of the purine and SAM binding riboswitches
Abstract
Riboswitches are recently discovered genetic regulatory elements found in the 5'-untranslated regions of bacterial mRNAs that act through their ability to specifically bind small-molecule metabolites. Binding of the ligand to the aptamer domain of the riboswitch is communicated to a second domain, the expression platform, which directs transcription or translation of the mRNA. To understand this process on a molecular level, structures of three of these riboswitches bound to their cognate ligands have been solved by X-ray crystallography: the purine, thiamine pyrophosphate (TPP), and S-adenosylmethionine (SAM-I) binding aptamer domains. These studies have uncovered three common themes between the otherwise different molecules. First, the natural RNA aptamers recognize directly or indirectly almost every feature of their ligand to achieve extraordinary specificity. Second, all of these RNAs use a complex tertiary architecture to establish the binding pocket. Finally, in each case, ligand binding serves to stabilize a helix that communicates the binding event to the expression platform. Here, we discuss these properties of riboswitches in the context of the purine and SAM-I riboswitches.
Similar articles
-
Mutational analysis of the purine riboswitch aptamer domain.Biochemistry. 2007 Nov 20;46(46):13297-309. doi: 10.1021/bi700410g. Epub 2007 Oct 26. Biochemistry. 2007. PMID: 17960911 Free PMC article.
-
Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine.Biochem Cell Biol. 2008 Apr;86(2):157-68. doi: 10.1139/O08-008. Biochem Cell Biol. 2008. PMID: 18443629 Review.
-
Ligand-dependent folding of the three-way junction in the purine riboswitch.RNA. 2008 Apr;14(4):675-84. doi: 10.1261/rna.736908. Epub 2008 Feb 11. RNA. 2008. PMID: 18268025 Free PMC article.
-
Structure of the S-adenosylmethionine riboswitch regulatory mRNA element.Nature. 2006 Jun 29;441(7097):1172-5. doi: 10.1038/nature04819. Nature. 2006. PMID: 16810258
-
Purine sensing by riboswitches.Biol Cell. 2008 Jan;100(1):1-11. doi: 10.1042/BC20070088. Biol Cell. 2008. PMID: 18072940 Review.
Cited by
-
Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches.Nucleic Acids Res. 2019 Nov 18;47(20):10931-10941. doi: 10.1093/nar/gkz839. Nucleic Acids Res. 2019. PMID: 31598729 Free PMC article.
-
Structural and functional studies of S-adenosyl-L-methionine binding proteins: a ligand-centric approach.BMC Struct Biol. 2013 Apr 25;13:6. doi: 10.1186/1472-6807-13-6. BMC Struct Biol. 2013. PMID: 23617634 Free PMC article.
-
Recognition of S-adenosylmethionine by riboswitches.Wiley Interdiscip Rev RNA. 2011 Mar-Apr;2(2):299-311. doi: 10.1002/wrna.63. Epub 2011 Jan 12. Wiley Interdiscip Rev RNA. 2011. PMID: 21957011 Free PMC article. Review.
-
Structural features of metabolite-sensing riboswitches.Trends Biochem Sci. 2007 Sep;32(9):415-24. doi: 10.1016/j.tibs.2007.08.005. Epub 2007 Aug 30. Trends Biochem Sci. 2007. PMID: 17764952 Free PMC article. Review.
-
Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices.ACS Synth Biol. 2013 Aug 16;2(8):463-72. doi: 10.1021/sb4000096. Epub 2013 Mar 28. ACS Synth Biol. 2013. PMID: 23654267 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources