Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Aug;42(2):123-32.
doi: 10.1016/j.ceca.2007.02.006. Epub 2007 Mar 26.

Biochemical properties and cellular localisation of STIM proteins

Affiliations
Review

Biochemical properties and cellular localisation of STIM proteins

Marie A Dziadek et al. Cell Calcium. 2007 Aug.

Abstract

Human and murine STIM1 were originally discovered as candidate growth regulators in tumours and in the bone marrow stroma, and the structurally related vertebrate family members, STIM2 and the Drosophila homologue D-Stim, were subsequently identified. STIM proteins are ubiquitously expressed type I single-pass transmembrane proteins which have a unique combination of structural motifs within their polypeptide sequences. The extracellular regions contain an N-terminal unpaired EF-hand Ca(2+) binding motif adjacent to an unconventional glycosylated SAM domain, while the cytoplasmic regions contain alpha-helical coiled-coil domains within a region having homology to ERM domains adjacent to the transmembrane region, and phosphorylated proline-rich domains near the C-terminus. STIM1, STIM2 and D-Stim diverge significantly only in their structure C-terminal to the coiled-coil/ERM domains. The STIM structural domains were predicted to function in Ca(2+) binding as well as in mediating interactions between STIM proteins and other proteins, and homotypic STIM1-STIM1 and heterotypic STIM1-STIM2 interactions were demonstrated biochemically. However, the functional significance of the cellular localisation of STIM1 and its domain structure only became evident after recent breakthrough research identified STIM1 as a key regulator of store-operated calcium (SOC) entry into cells. It is now clear that STIM1 is both a sensor of Ca(2+) depletion in the endoplasmic reticulum (ER) lumen and an activator of Orai1-containing SOC channels in the plasma membrane. On the basis of recent functional studies a model can be proposed to explain how the biochemical properties of STIM1 contribute to its precise membrane localisation and its function in regulating SOC entry.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources