Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Mar:38 Suppl 1:S49-62.
doi: 10.1016/j.injury.2007.02.010.

New technologies for the enhancement of skeletal repair

Affiliations
Review

New technologies for the enhancement of skeletal repair

T William Axelrad et al. Injury. 2007 Mar.

Abstract

Although fracture healing is a well-optimized biological process that leads to healing, approximately 10-20% of fractures result in impaired or delayed healing and these fractures may benefit from the use of biotechnologies to enhance skeletal repair. Peptide signaling molecules such as the bone morphogenetic proteins have been shown to stimulate the healing of fresh fractures, nonunions, and spinal fusions and side effects from their use appear to be minimal. Other growth factors currently being studied for local application include growth and differentiation factor-5 (GDF-5), vascular endothelial growth factor (VEGF), transforming growth factor beta (TGFbeta), and platelet-derived growth factor (PDGF). Molecules such as prostaglandin E receptor agonists and the thrombin-related peptide, TP508, have shown promise in animal models of fracture repair. Gene therapy using various growth factors or combinations of factors might also aid in fracture repair, particularly as new methods for delivery that do not require viral vectors are developed. Systemic therapy with agents such as parathyroid hormone (PTH), growth hormone (GH), and the HMG-CoA reductase inhibitors are also under investigation. As these and other technologies are shown to be safe and effective, their use will become a part of the standard of care in managing skeletal injuries.

PubMed Disclaimer

MeSH terms

Substances