Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;23(7):559-66.
doi: 10.1002/dmrr.743.

Reduced NO synthesis and eNOS mRNA expression in endothelial cells from newborns with a strong family history of type 2 diabetes

Affiliations

Reduced NO synthesis and eNOS mRNA expression in endothelial cells from newborns with a strong family history of type 2 diabetes

Noé Alvarado-Vásquez et al. Diabetes Metab Res Rev. 2007 Oct.

Abstract

Background: A deficient synthesis of nitric oxide (NO) may play a role in the early endothelial dysfunction of healthy humans with a strong family history of type 2 diabetes (DM2). In this study, we evaluate the intracellular synthesis of NO and the expression of eNOS transcripts in human umbilical vein endothelial cells (HUVECs), exposed to high glucose concentrations, of healthy newborns with (experimental) and without (control) a strong family history of DM2.

Methods: HUVECs were incubated in M-199 culture media (containing a 5 mmol/L physiological glucose concentration) or supraphysiological glucose concentrations (15 or 30 mmol/L), for 48 h. Flow cytometry, reactive of Griess and RT-PCR were used to determine intracellular NO synthesis, presence of NO metabolites, and expression of eNOS, GLUT1 or p53 transcripts.

Results: NO synthesis in experimental HUVECs showed a progressive reduction in the presence of increasing glucose concentration (11% for 5 mmol to 8% for 30 mmol; p < 0.01), whereas control HUVECs showed an increase in NO synthesis (3% for 5 mmol to 31% for 30 mmol; p < 0.001). In experimental HUVECs, we found a diminished expression of eNOS and p53, and also an enhanced expression of GLUT1 mRNA transcripts. Control HUVECs showed an increase in eNOS, and no modifications in p53 or GLUT1 mRNA transcripts.

Conclusions: Our results show how HUVECs, isolated from healthy newborns with a strong family history of DM2, have an abnormal intracellular synthesis of NO and an impaired expression of eNOS, GLUT1 and p53 genes, all associated with NO synthesis.

PubMed Disclaimer

Publication types

LinkOut - more resources