Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 7;585(2):305-11.
doi: 10.1016/j.aca.2007.01.007. Epub 2007 Jan 13.

Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples

Affiliations

Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples

Elham Zeini Jahromi et al. Anal Chim Acta. .

Abstract

Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 microL methanol (disperser solvent) containing 34 microL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25+/-1 microL). Then a 20 microL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L(-1) with detection limit of 0.6 ng L(-1). The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L(-1) of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L(-1) are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources