Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Apr;156(4):483-7.
doi: 10.1530/EJE-06-0712.

The role of 6-[18F]fluorodopamine positron emission tomography in the localization of adrenal pheochromocytoma associated with von Hippel-Lindau syndrome

Affiliations
Comparative Study

The role of 6-[18F]fluorodopamine positron emission tomography in the localization of adrenal pheochromocytoma associated with von Hippel-Lindau syndrome

Priya Kaji et al. Eur J Endocrinol. 2007 Apr.

Abstract

Objective: [(123/131)I]metaiodobenzylguanidine (MIBG) scintigraphy is considered as the gold standard in the localization of pheochromocytoma. However, this method has less optimal sensitivity for the detection of pheochromocytoma associated with von Hippel-Lindau (VHL). Our preliminary results suggest that this is partially due to the low expression of cell membrane norepinephrine transporter system in VHL-related pheochromocytoma cells. Another probable cause may be the low affinity that [(123/131)I]MIBG has for these cells. Recently, 6-[(18)F]fluorodopamine ([(18)F]DA) positron emission tomography (PET) has been introduced as a novel functional imaging modality with high sensitivity for pheochromocytoma. Therefore, we investigated whether [(18)F]DA PET is more effective than [(123/131)I]MIBG scintigraphy in the diagnostic localization of VHL-related adrenal pheochromocytoma.

Materials and methods: In this study, we evaluated seven VHL patients in whom adrenal pheochromocytomas were confirmed by histopathology results. Adrenal pheochromocytomas were localized using computed tomography (CT), magnetic resonance imaging (MRI), [(123/131)I]MIBG scintigraphy and [(18)F]DA PET.

Results: [(18)F]DA PET localized pheochromocytoma in all the seven patients, as did in CT. In contrast, three out of the seven had negative results utilizing [(123/131)I]MIBG scintigraphy and one out of the six patients had negative MRI results.

Conclusions: [(18)F]DA PET was found to show more promising results when compared with [(123/131)I]MIBG scintigraphy in the diagnostic localization of VHL-related adrenal pheochromocytoma, with a 100% rate of localization. Thus, [(18)F]DA PET in conjunction with CT/MRI should be considered as an effective method for the proper localization of VHL-related adrenal pheochromocytoma.

PubMed Disclaimer

Publication types

MeSH terms