Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;45(4):855-63.
doi: 10.1002/hep.21625.

Prevention of reperfusion injury and microcirculatory failure in macrosteatotic mouse liver by omega-3 fatty acids

Affiliations

Prevention of reperfusion injury and microcirculatory failure in macrosteatotic mouse liver by omega-3 fatty acids

Ashraf Mohammad El-Badry et al. Hepatology. 2007 Apr.

Abstract

Macrovesicular hepatic steatosis has a lower tolerance to reperfusion injury than microvesicular steatosis with an abnormally high ratio of omega-6 (n-6): omega-3 (n-3) polyunsaturated fatty acids (PUFAs). We investigated the influence of PUFAs on microcirculation in steatotic livers and the potential to minimize reperfusion injury in the macrosteatotic liver by normalization of PUFAs. Ob/ob mice were used as a model of macrovesicular hepatic steatosis and C57/Bl6 mice fed a choline-deficient diet for microvesicular steatosis. Steatotic and lean livers were subjected to 45 minutes of ischemia and 3 hours of reperfusion. Hepatic content of omega-3 and omega-6 PUFAs was determined. Microcirculation was investigated using intravital fluorescence microscopy. A second group of ob/ob mice was supplemented with dietary omega-3 PUFAs and compared with the control diet-fed group. Microcirculation, AST, and Kupffer cell activity were assessed. Macrosteatotic livers had significant microcirculatory dysfunction correlating with high omega-6: omega-3 PUFA ratio. Dietary omega-3 PUFA resulted in normalization of this ratio, reduction of intrahepatic lipids, and decrease in the extent of macrosteatosis. Defective microcirculation was dramatically ameliorated with significant reduction in Kupffer cell activity and protection against hepatocellular injury both before ischemia and after reperfusion.

Conclusion: Macrosteatotic livers disclosed an abnormal omega-6: omega-3 PUFA ratio that correlates with a microcirculatory defect that enhanced reperfusion injury. Thus, protective strategies applied during or after ischemia are unlikely to be useful. Preoperative dietary omega-3 PUFAs protect macrosteatotic livers against reperfusion injury and might represent a valuable method to expand the live liver donor pool.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources