Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Apr;17(2):72-80.
doi: 10.1016/j.semradonc.2006.11.003.

The role of functional imaging in the diagnosis and management of late normal tissue injury

Affiliations
Review

The role of functional imaging in the diagnosis and management of late normal tissue injury

Elizabeth S Evans et al. Semin Radiat Oncol. 2007 Apr.

Abstract

Normal tissue injury after radiation therapy (RT) can be defined based on either clinical symptoms or laboratory/radiologic tests. In the research setting, functional imaging (eg, single-photon emission computed tomography [SPECT], positron-emission tomography [PET], and magnetic resonance imaging [MRI]) is useful because it provides objective quantitative data such as metabolic activity, perfusion, and soft-tissue contrast within tissues and organs. For RT-induced lung, heart, and parotid gland injury, pre- and post-RT SPECT images can be compared with the dose- and volume-dependent nature of regional injury. In the brain, SPECT can detect changes in perfusion and blood flow post-RT, and PET can detect metabolic changes, particularly to regions of the brain that have received doses above 40 to 50 Gy. On MRI, changes in contrast-enhanced images, T(1) and T(2) relaxation times, and pulmonary vascular resistance at different intervals pre- and post-RT show its ability to detect and distinguish different phases of radiation pneumonitis. Similarly, conventional and diffusion-weighted MRI can be used to differentiate between normal tissue edema, necrosis, and tumor in the irradiated brain, and magnetic resonance spectroscopy can measure changes in compounds, indicative of membrane and neuron disruption. The use of functional imaging is a powerful tool for early detection of RT-induced normal tissue injury, which may be related to long-term clinically significant injury.

PubMed Disclaimer

Publication types

MeSH terms