Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Feb;21(2):163-71; discussion 171, 174, 179-82.

Adjuvant treatment of non-small-cell lung cancer: how do we improve the cure rates further?

Affiliations
  • PMID: 17396481
Free article
Review

Adjuvant treatment of non-small-cell lung cancer: how do we improve the cure rates further?

Antoinette J Wozniak et al. Oncology (Williston Park). 2007 Feb.
Free article

Abstract

Surgery remains the initial treatment for patients with early-stage non-small-cell lung cancer (NSCLC). Additional therapy is necessary because of high rates of distant and local disease recurrence after surgical resection. Early trials of adjuvant chemotherapy and postoperative radiation were often plagued by small patient sample size, inadequate surgical staging, and ineffective or antiquated treatment. A 1995 meta-analysis found a nonsignificant reduction in risk of death for postoperative cisplatin-based chemotherapy. Since then, a new generation of randomized phase III trials have been conducted, some of which have reported a benefit for chemotherapy in the adjuvant setting. The role of postoperative radiation therapy remains to be defined. It may not be beneficial in early-stage NSCLC but still may have utility in stage IIIA disease. Improvement in survival outcomes from adjuvant treatment are likely to result from the evaluation of novel agents, identification of tumor markers predictive of disease relapse, and definition of factors that determine sensitivity to therapeutic agents. Some of the molecularly targeted agents such as the angiogenesis and epidermal growth factor receptor inhibitors are being incorporated into clinical trials. Preliminary results with gene-expression profiles and lung cancer proteomics have been promising. These techniques may be used to create prediction models to identify patients at risk for disease relapse. Molecular markers such as ERCC1 may determine response to treatment. All of these innovations will hopefully increase cure rates for lung cancer patients by maximizing the efficacy of adjuvant therapy.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources