Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan;50(1):55-60.
doi: 10.1007/BF00297298.

Effect of membrane cholesterol on calcium phosphate formation in aqueous suspensions of anionic liposomes

Affiliations

Effect of membrane cholesterol on calcium phosphate formation in aqueous suspensions of anionic liposomes

D Skrtic et al. Calcif Tissue Int. 1992 Jan.

Abstract

The present study examined the effect of membrane cholesterol on liposome-mediated calcium phosphate precipitation in metastable aqueous solutions (2.25 mM Ca2+ and 1.5 mM inorganic phosphate) at 22 degrees C, pH 7.4 and 240 mOsm. The liposomes were prepared from 7:2:X molar mixtures of phosphatidylcholine, dicetylphosphate, and cholesterol (x = 0, 1, 5, or 9) and contained either 0 or 50 mM encapsulated phosphate. The membranes were made permeable to Ca2+ by addition of the cationophore, X-537A. Changes in external Ca2+ concentration were used as the principal monitor of the course of precipitation. Without encapsulated phosphate, 7:2:X liposomes (with or without ionophore) induced no precipitation. With 50 mM encapsulated phosphate and in the presence of ionophore, precipitation significantly depended on the cholesterol level in the membrane. At 0 and 10 mole% cholesterol, precipitate developed rapidly both within and outside the liposomes. At 35 and 50 mole% cholesterol, no observable intraliposomal precipitation occurred, and extraliposomal precipitation started only after an induction period of 24 hours. Delayed extraliposomal precipitation also took place in PO4-containing liposomes without added ionophore. In this latter case, however, cholesterol was essential for this precipitation to occur with the optimum level being around 10 mole%. Suppression of ionophore-mediated intraliposomal precipitation at higher cholesterol levels could be related to the inflexible cholesterol molecules making the membrane more rigid, thereby restricting Ca-ionophore transport. This restriction could be reversed with ethanol. Delayed extraliposomal precipitation in the absence of added ionophore (or at higher cholesterol levels in its presence) could be explained by seeding from low, unobserved levels of intraliposomal precipitate formed during slow, unfacilitated Ca2+ leakage into the liposomal interior.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Cell Struct Funct. 1987 Apr;12(2):187-95 - PubMed
    1. Calcif Tissue Int. 1988 Oct;43(4):226-34 - PubMed
    1. FASEB J. 1989 May;3(7):1833-42 - PubMed
    1. Calcif Tissue Int. 1984 Jul;36(4):421-30 - PubMed
    1. Fed Proc. 1976 Feb;35(2):154-5 - PubMed

LinkOut - more resources