Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Apr;68(4):220-6.
doi: 10.1016/j.humimm.2006.09.003. Epub 2006 Oct 27.

Structural studies on HLA-G: implications for ligand and receptor binding

Affiliations
Review

Structural studies on HLA-G: implications for ligand and receptor binding

Craig S Clements et al. Hum Immunol. 2007 Apr.

Abstract

Human leukocyte antigen-G (HLA-G) is a class Ib major histocompatibility complex (MHC) molecule that is specifically expressed in immune-privileged tissues. The overall structure of HLA-G resembles other class I MHC molecules, in which a heavy chain comprised of three domains is noncovalently associated with beta(2)microglobulin (beta(2)m). A nine-residue self-peptide is bound within a cleft formed by two alpha-helices and a beta-sheet floor. An extensive network of contacts is formed between the peptide and the binding cleft, leading to a constrained mode of binding reminiscent of that observed in HLA-E. The alpha3 domain of HLA-G, the putative binding site for leukocyte immunoglobulinlike receptor-1 (LIR-1) and -2, is structurally distinct from class Ia MHC molecules, providing a basis for the observed differences in affinity for these ligands. In addition, a disulfide-bonded dimer adopts an oblique conformation, providing the possibility of a 1:2 (HLA-G dimer:receptor) complex stoichiometry. The relative orientation of the HLA-G protomers in the dimer structure suggests that it is unlikely that dimerization is involved in killer immunoglobulinlike receptor 2DL4 (KIR2DL4) binding.

PubMed Disclaimer

Publication types