Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;102(1):25-36.
doi: 10.1111/j.1471-4159.2007.04491.x. Epub 2007 Mar 30.

Type 2 transglutaminase differentially modulates striatal cell death in the presence of wild type or mutant huntingtin

Affiliations
Free article

Type 2 transglutaminase differentially modulates striatal cell death in the presence of wild type or mutant huntingtin

Qingmin Ruan et al. J Neurochem. 2007 Jul.
Free article

Abstract

Huntington's disease (HD), which is caused by an expanded polyglutamine tract in huntingtin (htt), is characterized by extensive loss of striatal neurons. The dysregulation of type 2 transglutaminase (TG2) has been proposed to contribute to the pathogenesis in HD as TG2 is up-regulated in HD brain and knocking out TG2 in mouse models of HD ameliorates the disease process. To understand the role of TG2 in the pathogenesis of HD, immortalized striatal cells established from mice in which mutant htt with a polyglutamine stretch of 111 Gln had been knocked-in and wild type (WT) littermates, were stably transfected with human TG2 in a tetracycline inducible vector. Overexpression of TG2 in the WT striatal cells resulted in significantly greater cell death under basal conditions as well as in response to thapsigargin treatment, which causes increased intracellular calcium concentrations. Furthermore, in WT striatal cells TG2 overexpression potentiated mitochondrial membrane depolarization, intracellular reactive oxygen species production, and apoptotic cell death in response to thapsigargin. In contrast, in mutant striatal cells, TG2 overexpression did not increase cell death, nor did it potentiate thapsigargin-induced mitochondrial membrane depolarization or intracellular reactive oxygen species production. Instead, TG2 overexpression in mutant striatal cells attenuated the thapsigargin-activated apoptosis. When in situ transglutaminase activity was quantitatively analyzed in these cell lines, we found that in response to thapsigargin treatment TG2 was activated in WT, but not mutant striatal cells. These data suggest that mutant htt alters the activation of TG2 in response to certain stimuli and therefore differentially modulates how TG2 contributes to cell death processes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources