Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May 1;120(Pt 9):1615-23.
doi: 10.1242/jcs.03438. Epub 2007 Apr 3.

Dose-dependent inhibition of proteasome activity by a mutant ubiquitin associated with neurodegenerative disease

Affiliations

Dose-dependent inhibition of proteasome activity by a mutant ubiquitin associated with neurodegenerative disease

Paula van Tijn et al. J Cell Sci. .

Abstract

The ubiquitin-proteasome system is the main regulated intracellular proteolytic pathway. Increasing evidence implicates impairment of this system in the pathogenesis of diseases with ubiquitin-positive pathology. A mutant ubiquitin, UBB(+1), accumulates in the pathological hallmarks of tauopathies, including Alzheimer's disease, polyglutamine diseases, liver disease and muscle disease and serves as an endogenous reporter for proteasomal dysfunction in these diseases. UBB(+1) is a substrate for proteasomal degradation, however it can also inhibit the proteasome. Here, we show that UBB(+1) properties shift from substrate to inhibitor in a dose-dependent manner in cell culture using an inducible UBB(+1) expression system. At low expression levels, UBB(+1) was efficiently degraded by the proteasome. At high levels, the proteasome failed to degrade UBB(+1), causing its accumulation, which subsequently induced a reversible functional impairment of the ubiquitin-proteasome system. Also in brain slice cultures, UBB(+1) accumulation and concomitant proteasome inhibition was only induced at high expression levels. Our findings show that by varying UBB(+1) expression levels, the dual proteasome substrate and inhibitory properties can be optimally used to serve as a research tool to study the ubiquitin-proteasome system and to further elucidate the role of aberrations of this pathway in disease.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources