Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;15(6):1182-8.
doi: 10.1038/sj.mt.6300157. Epub 2007 Apr 3.

Safety and efficacy of a lentiviral vector containing three anti-HIV genes--CCR5 ribozyme, tat-rev siRNA, and TAR decoy--in SCID-hu mouse-derived T cells

Affiliations
Free article

Safety and efficacy of a lentiviral vector containing three anti-HIV genes--CCR5 ribozyme, tat-rev siRNA, and TAR decoy--in SCID-hu mouse-derived T cells

Joseph Anderson et al. Mol Ther. 2007 Jun.
Free article

Abstract

Gene therapeutic strategies show promise in controlling human immunodeficiency virus (HIV) infection and in restoring immunological function. A number of efficacious anti-HIV gene constructs have been described so far, including small interfering RNAs (siRNAs), RNA decoys, transdominant proteins, and ribozymes, each with a different mode of action. However, as HIV is prone to generating escape mutants, the use of a single anti-HIV construct would not be adequate to afford long range-viral protection. On this basis, a combination of highly potent anti-HIV genes--namely, a short hairpin siRNA (shRNA) targeting rev and tat, a transactivation response (TAR) decoy, and a CCR5 ribozyme--have been inserted into a third-generation lentiviral vector. Our recent in vitro studies with this construct, Triple-R, established its efficacy in both T-cell lines and CD34 cell-derived macrophages. In this study, we have evaluated this combinatorial vector in vivo. Vector-transduced CD34 cells were injected into severe combined immunodeficiency (SCID)-hu mouse thy/liv grafts to determine their capacity to give rise to T cells. Our results show that phenotypically normal transgenic T cells are generated that are able to resist HIV-1 infection when challenged in vitro. These important attributes of this combinatorial vector show its promise as an excellent candidate for use in human clinical trials.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources