Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 1992 Mar;33(3):394-7.

Targeted proteins for diagnostic imaging: does chemistry make a difference?

  • PMID: 1740709
Free article
Editorial

Targeted proteins for diagnostic imaging: does chemistry make a difference?

A R Fritzberg et al. J Nucl Med. 1992 Mar.
Free article

Abstract

The Oyen et al. study is valuable in that it systematically evaluates several of the factors involved in radiolabeled protein uptake and retention in infectious foci. The role of particular proteins and their receptor specific interactions seems to be inconsequential in agreement with the findings of other. However, the role of the radiolabel was shown to be important and significant differences were delineated from comparisons of the radionuclides and their associated chemistries. The conclusion implicating radionuclide chemistry and associated linkages underscores the need to optimize the attachment and labeling chemical modifications of protein carriers. Evaluation criteria should include serum stability, determination and assessment of the effect of molar substitution ratio, and potential for improving blood clearance without reducing the target-to-non-target ratio. Important areas for future study include characterization of radioactive metabolites and the design and synthesis of new ligands which direct the disposition of metabolites reducing retention in normal organs or accelerating renal excretion. Additionally, intracellular processing of radiolabel, compartmental distribution and strategies for augmenting internalization and retention within the target cell merit detailed exploration. For each radionuclide of interest, 111In, radioiodines, 99mTc and others, improved chemical moieties exist for controlling radiolabel fate. When carrying out mechanistic and evaluative studies, clear-cut conclusions will only be reached when defined and controlled chemistry is used. Having established a "gold standard," simplifications in radiolabeling and other chemical refinements can then be pursued with a quantitative understanding of the trade-offs in targeting agent performance versus other considerations such as cost reduction, simplicity, and convenience.

PubMed Disclaimer

Comment on

MeSH terms

LinkOut - more resources