Recovery of mercury-contaminated fisheries
- PMID: 17408189
- DOI: 10.1579/0044-7447(2007)36[33:romf]2.0.co;2
Recovery of mercury-contaminated fisheries
Abstract
In this paper, we synthesize available information on the links between changes in ecosystem loading of inorganic mercury (Hg) and levels of methylmercury (MeHg) in fish. Although it is widely hypothesized that increased Hg load to aquatic ecosystems leads to increases in MeHg in fish, there is limited quantitative data to test this hypothesis. Here we examine the available evidence from a range of sources: studies of ecosystems contaminated by industrial discharges, observations of fish MeHg responses to changes in atmospheric load, studies over space and environmental gradients, and experimental manipulations. A summary of the current understanding of the main processes involved in the transport and transformation from Hg load to MeHg in fish is provided. The role of Hg loading is discussed in context with other factors affecting Hg cycling and bioaccumulation in relation to timing and magnitude of response in fish MeHg. The main conclusion drawn is that changes in Hg loading (increase or decrease) will yield a response in fish MeHg but that the timing and magnitude of the response will vary depending of ecosystem-specific variables and the form of the Hg loaded.
Similar articles
-
Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife.Sci Total Environ. 2016 Oct 15;568:1213-1226. doi: 10.1016/j.scitotenv.2016.05.094. Epub 2016 Jun 16. Sci Total Environ. 2016. PMID: 27320732
-
Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania.J Environ Manage. 2006 Oct;81(2):167-73. doi: 10.1016/j.jenvman.2005.09.026. Epub 2006 Jun 19. J Environ Manage. 2006. PMID: 16782263
-
Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem.Environ Pollut. 2008 Jul;154(1):77-88. doi: 10.1016/j.envpol.2007.12.030. Epub 2008 Feb 13. Environ Pollut. 2008. PMID: 18272273
-
The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis.Sci Total Environ. 2019 Jan 1;646:357-367. doi: 10.1016/j.scitotenv.2018.07.328. Epub 2018 Jul 24. Sci Total Environ. 2019. PMID: 30055496 Review.
-
Mercury methylation in rice paddy and accumulation in rice plant: A review.Ecotoxicol Environ Saf. 2020 Jun 1;195:110462. doi: 10.1016/j.ecoenv.2020.110462. Epub 2020 Mar 13. Ecotoxicol Environ Saf. 2020. PMID: 32179234 Review.
Cited by
-
A bibliometric analysis of publications in Ambio in the last four decades.Environ Sci Pollut Res Int. 2021 Dec;28(45):64345-64359. doi: 10.1007/s11356-021-14796-4. Epub 2021 Jul 24. Environ Sci Pollut Res Int. 2021. PMID: 34302600 Free PMC article.
-
Assessing anthropogenic sources of mercury in soil in Wanshan Hg mining area, Guizhou, China.Environ Sci Pollut Res Int. 2013 Nov;20(11):7560-9. doi: 10.1007/s11356-013-1616-y. Epub 2013 May 8. Environ Sci Pollut Res Int. 2013. PMID: 23653314
-
Challenges and opportunities for managing aquatic mercury pollution in altered landscapes.Ambio. 2018 Mar;47(2):141-169. doi: 10.1007/s13280-017-1006-7. Ambio. 2018. PMID: 29388127 Free PMC article.
-
A decision framework for possible remediation of contaminated sediments in the River Kymijoki, Finland.Environ Sci Pollut Res Int. 2009 Jan;16(1):95-105. doi: 10.1007/s11356-008-0061-9. Epub 2008 Oct 21. Environ Sci Pollut Res Int. 2009. PMID: 18941816
-
Can mercury in fish be reduced by water level management? Evaluating the effects of water level fluctuation on mercury accumulation in yellow perch (Perca flavescens).Ecotoxicology. 2014 Oct;23(8):1555-63. doi: 10.1007/s10646-014-1296-5. Epub 2014 Aug 19. Ecotoxicology. 2014. PMID: 25134675
Publication types
MeSH terms
Substances
LinkOut - more resources
Medical