Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr 5;54(1):35-49.
doi: 10.1016/j.neuron.2007.02.030.

Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel

Affiliations
Free article

Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel

Walter Lerchner et al. Neuron. .
Free article

Abstract

Several genetic strategies for inhibiting neuronal function in mice have been described, but no system that directly suppresses membrane excitability and is triggered by a systemically administered drug, has been validated in awake behaving animals. We expressed unilaterally in mouse striatum a modified heteromeric ivermectin (IVM)-gated chloride channel from C. elegans (GluClalphabeta), systemically administered IVM, and then assessed amphetamine-induced rotational behavior. Rotation was observed as early as 4 hr after a single intraperitoneal IVM injection (10 mg/kg), reached maximal levels by 12 hr, and was almost fully reversed by 4 days. Multiple cycles of silencing and recovery could be performed in a single animal. In striatal slice preparations from GluClalphabeta-expressing animals, IVM rapidly suppressed spiking. The two-subunit GluCl/IVM system permits "intersectional" strategies designed to increase the cellular specificity of silencing in transgenic animals.

PubMed Disclaimer

Publication types

MeSH terms