Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Apr;127(4):579-86.
doi: 10.1248/yakushi.127.579.

Insulin resistance as a membrane microdomain disorder

Affiliations
Free article
Review

Insulin resistance as a membrane microdomain disorder

Jin-ichi Inokuchi. Yakugaku Zasshi. 2007 Apr.
Free article

Abstract

Membrane microdomains (lipid rafts) are now recognized as critical for proper compartmentalization of insulin signaling, but their role in the pathogenesis of insulin resistance has not been investigated. Detergent-resistant membrane microdomains (DRMs), isolated in the low density fractions, are highly enriched in cholesterol, glycosphingolipids and various signaling molecules. TNFalpha induces insulin resistance in type 2 diabetes, but its mechanism of action is not fully understood. We have found a selective increase in the acidic glycosphingolipid ganglioside GM3 in 3T3-L1 adipocytes treated with TNFalpha, suggesting a specific function for GM3. We were able to extend these in vitro observations to living animals using obese Zucker fa/fa rats and ob/ob mice, in which the GM3 synthase mRNA levels in the white adipose tissues are significantly higher than in their lean controls. In the DRMs from TNFalpha-treated 3T3-L1 adipocytes, GM3 levels were doubled, compared to results in normal adipocytes. Additionally, insulin receptor (IR) accumulations in the DRMs were diminished, while caveolin and flotillin levels were unchanged. GM3 depletion was able to counteract the TNFalpha-induced inhibition of IR accumulation into DRMs. Together, these findings provide compelling evidence that in insulin resistance the insulin metabolic signaling defect can be attributed to a loss of IRs in the microdomains due to an accumulation of GM3.

PubMed Disclaimer