Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Apr;127(4):729-33.
doi: 10.1248/yakushi.127.729.

[Mechanisms underlying enhanced vasodilator responses to various vasodilator agents following endothelium removal in rat mesenteric resistance arteries]

[Article in Japanese]
Affiliations
Free article
Review

[Mechanisms underlying enhanced vasodilator responses to various vasodilator agents following endothelium removal in rat mesenteric resistance arteries]

[Article in Japanese]
Yukiko Iwatani et al. Yakugaku Zasshi. 2007 Apr.
Free article

Abstract

We reported that vasodilator responses to various vasodilator agents were augmented by endothelium removal. To explain this mechanism, we hypothesized that endothelium removal eliminates the release of endothelium-derived contracting factor EDCF, which counteracts the vasodilation. However, the underlying mechanism is unknown. Therefore the present study investigated the second messenger system further to investigate the mechanisms underlying enhanced vasodilator response after endothelium removal in rat mesenteric resistance arteries. Mesenteric vascular beds isolated from Wistar rats were perfused and perfusion pressure was measured. The vascular endothelium was removed by 30-s perfusion of sodium deoxycholate. Vasodilator responses to sodium nitroprusside (SNP) perfusion were markedly augmented and prolonged by endothelium removal. In preparations with intact endothelium and active tone, 5-min perfusion of sodium azide (non-specific guanylate cyclase (GC) activator), ANP (membrane-linked GC activator), and 8-Br-cGMP (cGMP analogue) caused a concentration-dependent vasodilation that was markedly augmented by endothelium removal. However, vasodilation induced by YC-1 and BAY41-2272 (selective soluble GC activator) was not augmented by endothelium removal. When methylene blue (soluble GC inhibitor) was present in the medium, SNP caused a concentration-dependent vasodilation in the preparation with intact endothelium, which was less augmented by endothelium removal compared with control (preparation without methylene blue). These findings suggest that endothelium removal affects intracellular cGMP-mediated signal transduction system in vascular smooth muscle cells.

PubMed Disclaimer

Similar articles